Publications

Publications in Nature or Science
  • He, X., et al. Global significance of iodic acid new-particle formation in the atmosphere, Science, 371 (6529): 589-595, DOI: 10.1126/science.abe0298, 2021
  • Sipilä M., et al. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 537, 532–534, doi: 10.1038/nature19314, 2016.
  • Dunne E. et al.: Global atmospheric particle formation from CERN CLOUD measurements, Science, doi: 10.1126/science.aaf2649, 2016.
  • Tröstl, J., et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere, Nature, 533, 527–531, doi:10.1038/nature18271, 2016.
  • Kirkby, J., et al. Ion-induced nucleation of pure biogenic particles, Nature, 533, 521–526, doi: 10.1038/nature17953, 2016.
  • Bianchi, F., et al. New particle formation in the free troposphere: A question of chemistry and timing, Science, 352(6289), 1109–1112, doi:10.1126/science.aad5456, 2016.
  • Ehn, M., et al. A Large Source of Low-volatility Secondary Organic Aerosol, Nature, 506, 476-479, doi:10.1038/nature13032, 2014.
  • Riccobono et al. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles, Science, doi:10.1126/science.1243527, 2014.
  • Kulmala, M., et al. Direct Observations of Atmospheric Aerosol Nucleation, Science, 339, 943-946, doi: 10.1126/science.1227385, 2013.
  • Almeida, J., et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359–363, doi: 10.1038/nature12663, 2013.
  • Mauldin, R. L., et al. A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488(7410), doi: 10.1038/Nature11278, 2012.
  • Kirkby, J., et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429-U477, doi:10.1038/nature10343, 2011.
  • Sipilä, M., et al. The role of sulphuric acid in atmospheric nucleation, Science, 327, 1243-1246, doi:10.1126/science.1180315, 2010.

 

OTHER HIGHLIGHTED PUBLICATIONS

2023

  • Tham, Y. J. et al. Widespread detection of chlorine oxyacids in the Arctic atmosphere, Nature Communications. 14, 1769. 10.1038/s41467-023-37387-y, 2023.

  • Boyer, M. et al. A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinarydrifting Observatory for the Study of Arctic Climate (MOSAiC) expeditionAtmospheric Chemistry and Physics. 23, 1,  389-415, 10.5194/acp-23-389-2023, 2023

2022

  • Thakur, R. C. et al. An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom, Atmospheric Chemistry and Physics. 22, p. 6365-6391, 10.5194/acp-22-6365-2022, 2022.
  • Jokinen, T. et al. Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest, Atmospheric Chemistry and Physics22, 2237-2254. 10.5194/acp-22-2237-2022, 2022
  • Quelever, L. et al. Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula, Atmospheric Chemistry and Physics. 22,8417-8437, 10.5194/acp-22-8417-2022, 2022

2021

  • Tham, Y. J., et al. Direct field evidence of autocatalytic iodine release from atmospheric aerosol, Proceedings of the National Academy of Sciences, 118 (4) e2009951118; DOI: 10.1073/pnas.2009951118, 2021

  • Beck, L. J. and Sarnela, N., et al. Differing Mechanisms of New Particle Formation at Two Arctic Sites, Geophysical Research Letters, 47, e2020GL091334. https://doi.org/10.1029/2020GL091334, 2021
  • Sulo, J., et al., Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest, Atmospheric Chemistry and Physics, 21, 695–715, https://doi.org/10.5194/acp-21-695-2021, 2021

2020

  • Yan, C., et al. Size-dependent influence of NOx on the growth rates of organic aerosol particles, Science Advances, 6 (22) eaay4945 DOI: 10.1126/sciadv.aay4945, 2020
  • Dada, L., et al. Sources and sinks driving sulphuric acid concentrations in contrasting environments: implications on proxy calculations, Atmospheric Chemistry and Physics, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, 2020

2019

  • Bianchi, F., et al. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol , Chemical Reviews, 119, 6, p. 3472-3509, 2019
  • Molteni, U., et al. Formation of Highly Oxygenated Organic Molecules from alpha-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development, Earth and Space Chemistry. 3, 5, p. 873-883, 2019
  • Nielsen, I. E. et al. Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station9, Atmospheric Chemistry and Physics. 19, 15, 10239-10256, 10.5194/acp-19-10239-2019, 2019

  • Roldin, P. et al. The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system Nature Communications. 10, 4370, 10.1038/s41467-019-12338-8, 2019

2018

  • Hao, L., et al. Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods, Atmospheric Chemistry and Physics, 18, 23, p.17705-17716, 2018
  • Yan, C., et al. The role of H2SO4-NH3 anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest, Atmospheric Chemistry and Physics, 18, 13231-13243, https://doi.org/10.5194/acp-18-13231-2018, 2018
  • Sarnela, N. M., et al. Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber, Atmospheric Chemistry and Physics, 18, 2363-2380, 2018
  • Kürten, A., et al. New particle formation in the sulfuric acid-dimethylamine-water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model, Atmospheric Chemistry and Physics, 18, 845-863, 2018
  • Frege, C., et al. Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation, Atmospheric Chemistry and Physics, 18, 1, 65-79, 2018
  • Jokinen, T., et al., Ion induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica, Science Advances, 4, 11, 2018
  • Lehtipalo, K., et al., Multi-component new particle formation from sulfuric acid, ammonia, and biogenic vapors, Science Advances, 4, 12, 2018
  • Rose, C., et al. Observations of biogenic ion-induced cluster formation in the atmosphere, Science Advances 4, 4, 2018
  • Lawler, M. J. et al Evidence for Diverse Biogeochemical Drivers of Boreal Forest New Particle Formation, Geophysical Research Letters, 45, 4, 2038-2046, 10.1002/2017GL076394, 2018

  • Qi, X. et al. Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China, Atmospheric Chemistry and Physics, 18, 16, 11779-11791, 10.5194/acp-18-11779-2018, 2018

  • Stolzenburg, D. et al. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range, Proceedings of the National Academy of Sciences of the United States of America, 115, 37, 9122-9127, 10.1073/pnas.1807604115, 2018

  • Zha, Q. et al. Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy, Atmospheric Chemistry and Physics, 18, 23, 17437-17450, 10.5194/acp-18-17437-2018, 2018

2017

  • Jokinen, T., et al. Solar eclipse demonstrating the importance of photochemistry in new particle formation, Scientific Reports, 7, 45705, 2017
  • Bianchi, F. et al. The role of highly oxygenated molecules (HOMs) in determining the composition of ambient ions in the boreal forest, Atmospheric Chemistry and Physics, 17, 22, 13819-13831, 10.5194/acp-17-13819-2017, 2017

  • Wagner, R. et al. The role of ions in new particle formation in the CLOUD chamber, Atmospheric Chemistry and Physics, 17, 24, 15181-15197, 10.5194/acp-17-15181-2017, 2017

2016

  • Lehtipalo, K., et al. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles, Nature Communications, 7 (11594), doi:10.1038/ncomms11594, 2016
  • Berndt, T. Hydroxyl radical-induced formation of highly oxidized organic compounds, Nature Communications. 7, 13677, doi.org/10.1038/ncomms13677, 2016
  • Lawler, M.J., et al. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD, Atmospheric Chemistry and Physics, 16, 21, 13601-16618, https://doi.org/10.5194/acp-16-13601-2016, 2016
  • Kuerten, A., et al. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures, Journal of Geophysical Research : Atmospheres, 121, 20, 12377-12400, 2016
  • Gordon, H. et al. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation, Proceedings of the National Academy of Sciences of the United States of America, 113, 43, 12053-1205, 2016
  • Yan, C., et al. Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization, Atmospheric Chemistry and Physics, 16, 19, 12715-12731, 2016
  • Jokinen, T., et al Production of highly oxidized organic compounds from ozonolysis of β-caryophyllene: laboratory and field measurements, Boreal Environment Research, 21: 262–273, 2016
  • Järvinen, E., et al. Observation of viscosity transition in a-pinene secondary organic aerosol , Atmospheric Chemistry and Physics 16, 4423-4438, doi:10.5194/acp-16-4423-2016, 2016
  • Rondo, L., et al. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by chemical ionization mass spectrometer , Journal of Geophysical Research: Atmospheres, DOI: 10.1002/2015JD023868, 2016
  • Kim, J. et al Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments, Atmospheric Chemistry and Physics, 16, 293-304, doi:10.5194/acp-16-293-2016, 2016
  • Ahlm, L., et al. Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber , Aerosol Science and Technology, 50 (10), 2016
  • Faust, J. A., et al. Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments , Environmental Science & Technology Letters 3 (2), 42-46, doi: 10.1021/acs.estlett.5b00308, 2016

2015

  • Jokinen, T., et al. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications, Proc. Natl. Acad. Sci., 112, 23, 7123-7128, doi: 10.1073/pnas.1423977112, JUN 9 2015.
  • Sipilä, M., et al. Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest, Atmos. Meas. Tech., 8, 4001-4011, doi:10.5194/amt-8-4001-2015, 2015
  • Rissanen, MP., et al. Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding alpha-Pinene, J. Phys. Chem. A, 119, 19, 4633-4650, doi: 10.1021/jp510966g, May 14 2015.
  • Rose, C. et al. Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere. Atmos. Chem. Phys., 15, 3413–3428, doi:10.5194/acp-15-3413-2015, 2015.
  • Schobesberger, S. et al. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation, Atmos. Chem. Phys., doi:10.5194/acp-15-55-2015, 2015.

2014

  • Kürten et al. Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions, doi/10.1073/pnas.1404853111, PNAS, 2014.
  • Jokinen, T. et al. Rapid Autoxidation Forms Highly Oxidized RO2 Radicals in the Atmosphere, Angewandte Chemie International Edition, doi: 10.1002/anie.201408566, 2014
  • Sipilä, M, et al. Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids, Atmospheric Chemistry and Physics, 14, 12143-12153, doi:10.5194/acp-14-12143-2014, 2014
  • Kulmala, M., et al. Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation, Annu. Rev. Phys. Chem., 65(1), 21-37. doi:10.1146/annurev-physchem-040412-110014, 2014.
  • Lopez-Hilfiker, F. D., et al. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmos. Meas. Tech., 7, 983-1001, doi:10.5194/amt-7-983-2014, 2014.
  • Rissanen, M. P., et al. CH2NH2 + O-2 and CH3CHNH2 + O-2 Reaction Kinetics: Photoionization Mass Spectrometry Experiments and Master Equation Calculations, J. Phys. Chem. A, 118, 12, 2176-2186, doi: 10.1021/jp411238e, 2014.
  • Kangasluoma, J., et al., Sub-3 nm particle size and composition dependent response of a nano-CPC battery, Atmos. Meas. Tech., 7, 689-700, doi:10.5194/amt-7-689-2014, 2014.
  • Schnitzhofer, R., et al. A. and the CLOUD Team. Characterisation of organic contaminants in the CLOUD chamber at CERN, doi:10.5194/amt-7-2159-2014, Atmos. Meas. Tech., 7, 2159-2168, 2014.

2013

  • Schobesberger, S., et al., Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules, P. Natl. Acad. Sci., 110(43), 17223-17228. doi: 10.1073/pnas.1306973110, 2013.
  • Corrigan, A. L., et al., Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiälä, Finland, during HUMPPA-COPEC 2010, Atmos. Chem. Phys., 13, 12233-12256, doi:10.5194/acp-13-12233-2013, 2013.
  • Vogel, A. L., et al., In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry, Atmos. Chem. Phys., 13, 10933-10950, doi:10.5194/acp-13-10933-2013, 2013.
  • Olenius, T., et al., Comparing simulated and experimental molecular cluster distributions, Farad. Discuss., 165, 75-89, doi: 10.1039/C3FD00031A, 2013.
  • Donahue, N. M., et al., How do organic vapors contribute to new-particle formation?, Farad. Discuss., 165, 91-104, doi: 10.1039/C3FD00046J, 2013.
  • Keskinen, H., et al., Evolution of particle composition in CLOUD nucleation experiments, Atmos. Chem. Phys., 13, 5587-5600, doi: 10.5194/acp-13-5587-2013, 2013.
  • Vogel, A. L., et al., Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study, Atmos. Meas. Tech., 6, 431-443, doi:10.5194/amt-6-431-2013, 2013.

2012

  • Kulmala, M., et al., Measurement of the nucleation of atmospheric aerosol particles, Nature Protocols, 7(9), 1651-1667, doi: 10.1038/ nprot.2012.091, 2012.
  • Berndt, T., et al., Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO2, Journal of Physical Chemistry Letters, 3(19), 2892-2896. doi: 10.1021/Jz301158u, 2012.
  • Ehn, M., et al., Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air, Atmos. Chem. Phys., 12, 5113-5127, doi: 10.5194/acp-12-5113-2012, 2012.
  • Häkkinen, S. A. K., et al., Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland, Atmos. Chem. Phys., 12, 10771-10786, doi: 10.5194/acp-12-10771-2012, 2012.
  • Riccobono, F., et al., Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth, Atmos. Chem. Phys., 12, 9427-9439, doi: 10.5194/acp-12-9427-2012, 2012.
  • Jokinen, T., et al., Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF, Atmos. Chem. Phys., 12, 4117-4125, doi: 10.5194/acp-12-4117-2012, 2012.

2011

  • Kurtén, T., et al., The effect of H2SO4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid, Atmos. Chem. Phys., 11, 3007-3019, doi: 10.5194/acp-11-3007-2011, 2011.
  • Laitinen, T., et al., Characterization of organic compounds in 10-to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques, Atmos. Environ., 45, 3711-3719, doi: 10.1016/j.atmosenv.2011.04.023, 2011.
  • Lehtipalo, K., et al.. Observations of Nano-CN in the nocturnal boreal forest, Aerosol Sci. Technol., 45, 499-509, doi: 10.1080/02786826.2010.547537, 2011.
  • Liao, L., et al., Monoterpene pollution episodes in a forest environment: Indication of anthropogenic origin and association with aerosol particles, Boreal Env. Res., 16, 288-303, 2011.
  • Manninen, H. E., et al., Characterisation of corona-generated ions used in a neutral cluster and air ion spectrometer (NAIS), Atmos. Meas. Tech., 4, 2767-2776, doi: 10.5194/amt-4-2767-2011, 2011.
  • Ehn, M., et al., An instrumental comparison of mobility and mass measurements of atmospheric small ions, Aerosol Sci. Tech., 45, 499-509, doi: 10.1080/02786826.2010.547890, 2011.

2010

  • T. Petäjä, et al., Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere, Physical Review Letters, 106, doi.org/10.1103/PhysRevLett.106.228302, 2011.
  • Ehn, M., et al., Composition and temporal behavior of ambient ions in the boreal forest, Atmos. Chem. Phys., 10, 8513-8530, doi:10.5194/acp-10-8513-2010, 2010.
  • Junninen, H., et al., A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039-1053, doi:10.5194/amt-3-1039-2010, 2010.