Research outputs

  • Wang, Q., Lintunen, A., Zhao, P., Shen, W., Salmon, Y., Chen, X., Ouyang, L., Zhu, L., Ni, G., Sun, D., Rao, X., Hölttä, T. 2020. Assessing environmental control of sap flux of three tree species plantations in degraded hilly lands in South China. Forests 11: 206. doi: 10.3390/f11020206
  • Salmon, Y., Lintunen, A., Dayet, A., Chan, T., Dewar, R., Vesala, T., Hölttä, T. 2020. Leaf carbon and water status control stomatal and non-stomatal limitations of photosynthesis in trees. New Phytologist 226: 690-703. doi: 10.1111/nph.16436
  • Lintunen, A., Paljakka, T., Salmon, Y., Dewar, R., Riikonen, A, Hölttä, T. 2020. The influence of soil temperature and water content on belowground hydraulic conductance and leaf gas exchange in mature trees of three boreal species. Plant, Cell and Environment 43: 532-547. doi: 10.1111/pce.13709
  • Lintunen, A., Losso, A., Aalto, J., Chan, T., Hölttä, T., Mayr, S. 2020. Propagating ice front induces gas bursts and ultrasonic acoustic emissions from freezing xylem. Tree Physiology 40: 170-182. doi: 10.1093/treephys/tpz123
  • Kaitaniemi, P., Lintunen, A., Sievänen, R. 2020. Power-law estimation of branch growth. Ecological Modelling 416: 108900. doi: 10.1016/j.ecolmodel.2019.108900
  • Lindfors, L., Atherton, J., Riikonen, A. & Holtta (2019) TA mechanistic model of winter stem diameter dynamics reveals the time constant of diameter changes and the elastic modulus across tissues and species. Agricultural and Forest Meteorology 272: 20-29
  • Paljakka, T.V.S., Lintunen, A., Salmon, Y. and Hölttä, T. 2019. Measurement of inner bark and leaf osmolality. In: Liesche J. (ed.) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. pp 135-142.
  • Salmon, Y., Lintunen, A., Lindfors, L., Suhonen, H., Sevanto, S., Vesala, T., Hölttä, T. 2018. Silver birch ability to refill fully embolised xylem conduits under tension. Acta Horticulturae 1222: 67-74. doi: 10.17660/ActaHortic.2018.1222.10
  • Lintunen, A., Paljakka, T., Salmon, Y., Hölttä, T. 2018. Belowground hydraulic conductance in a mature boreal Scots pine tree. Acta Horticulturae 1222: 103-108. doi: 10.17660/ActaHortic.2018.1222.14
  • Kaitaniemi, P., Lintunen, A., Sievänen, R., Perttunen, J. 2018. Computational analysis of the effects of light gradients and neighbouring species on foliar nitrogen. Ecological Informatics 48: 171-177. doi: 10.1016/j.ecoinf.2018.09.009
  • Hölttä, T., Dominguez. M., Salmon, Y., Aalto, J., Vanhatalo, A., Bäck, J., Lintunen, A. 2018. Water relations in silver birch during springtime. How is sap pressurized? Plant Biology 20: 834-847. doi: 10.1111/plb.12838
  • González-Muñoz, N., Sterck, F., Torres-Ruiz, J.M., Petit, G., Cochard, H., von Arx, G., Lintunen, A., Caldeira, M. Capdeville, G., Copini, P., Gebauer, R., Grönlund, L., Hölttä, T., Lobo-do-Vale, R., Peltoniemi, M., Stritih, A., Urban, J., Delzon, S. 2018. Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe. PLOS ONE 13: e0196075. doi: 10.1371/journal.pone.0196075
  • Petit, G., von Arx, G., Kiorapostolou, N., Lechthaler, S., Prendin, A.L., Anfodillo, T., Caldeira, M., Cochard, H., Copini, P., Crivellaro, A., Delzon, S., Gebauer, R., Gricar, J., Grönholm, L., Hölttä, T., Jyske, T., Lavrič, M., Lintunen, A., Lobo-do-Vale, R., Peltoniemi, M., Peters, R., Robert, E., Roig Juan, S., Senfeldr, M., Steppe, K., Urban, J., Van Camp, J., Sterck, F. 2018. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe. New Phytologist 218: 1383-1392. doi: 10.1111/nph.15118
  • Lintunen, A., Mayr, S., Salmon, Y., Cochard, H., Hölttä, T. 2018. Drivers of apoplastic freezing in gymnosperm and angiosperm branches. Ecology and Evolution 8: 333-343. doi: 10.1002/ece3.3665
  • Paljakka, T., Jyske, T., Lintunen, A., Aaltonen, H., Nikinmaa, E., Hölttä, T. 2017. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.). Plant, Cell & Environment 40: 2160-2173. doi: 10.1111/pce.13017
  • Hölttä T, Lintunen A, Chan T, Mäkelä A, Nikinmaa E. 2017. A steady state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux. Tree Physiology 37: 851-868. doi: 10.1093/treephys/tpx011
  • Lintunen, A., Lindfors, L., Nikinmaa, E., Hölttä, T. 2017. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula. Tree Physiology 37: 491-500. doi: 10.1093/treephys/tpw114
  • Lintunen, A., Paljakka, T., Jyske, T., Peltoniemi, M., Sterck, F., Von Arx, G., Cochard, H., Copini, P., Caldeira, M.C., Delzon, S., Gebauer, R., Grönlund, L., Kiorapostolou, N., Lechthaler, S., Lobo-do-Vale, R., Peters, R.L., Petit, G., Prendin, A.L., Salmon, Y., Steppe, K., Urban, J., Roig Juan, Robert, EMR, Hölttä, T. 2016. Osmolality and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe. Frontiers in Plant Science. doi: 10.3389/fpls.2016.00726
  • Lindfors, L., Hölttä, T., Lintunen, A., Porcar-Castell, A., Nikinmaa, E., Juurola, E. 2015. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings. Tree Physiology 35: 1314-1324. doi: 10.1093/treephys/TPV095
  • Lintunen, A., Paljakka, T., Riikonen, A., Lindén, L., Lindfors, L., Nikinmaa, E., Hölttä, T. 2015. Irreversible diameter change of branches correlates with other methods for estimating frost tolerance of living cells in freeze- thaw experiment: a case study with seven urban tree species in Helsinki. Annals of Forest Science 72: 1089-1098. doi: 10.1007/s13595-015-0516-3
  • Lintunen, A., Lindfors, L., Kolari, P., Juurola, E., Nikinmaa, E. and Hölttä, T. 2014. Bursts of CO2 released during freezing offer a new perspective on avoidance of winter embolism in trees. Annals of Botany 114: 1711-1718. doi: 10.1093/aob/mcu190
  • Lintunen, A., Hölttä, T. and Kulmala, M. 2013. Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress. Scientific Reports 3: 2031. doi: 10.1038/srep02031