Paper accepted to ICALP 2021

21.4.2021
The work establishes lower bounds on pure dynamic programming algorithms for maximum weight independent set via modelling such algorithms as tropical circuits.

The paper Lower Bounds on Dynamic Programming for Maximum Weight Independent Set by Tuukka Korhonen of the Constraint Reasoning and Optimization group has been accepted for publication in the proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), a top conference in its field.

Abstract:

We prove lower bounds on pure dynamic programming algorithms for maximum weight independent set (MWIS). We model such algorithms as tropical circuits, i.e., circuits that compute with max and + operations. For a graph G, an MWIS-circuit of G is a tropical circuit whose inputs correspond to vertices of G and which computes the weight of a maximum weight independent set of G for any assignment of weights to the inputs. We show that if G has treewidth w and maximum degree d, then any MWIS-circuit of G has 2^{Ω(w/d)} gates and that if G is planar, or more generally H-minor-free for any fixed graph H, then any MWIS-circuit of G has 2^{Ω(w)} gates. An MWIS-formula is an MWIS-circuit where each gate has fan-out at most one. We show that if G has treedepth t and maximum degree d, then any MWIS-formula of G has 2^{Ω(t/d)} gates. It follows that treewidth characterizes optimal MWIS-circuits up to polynomials for all bounded degree graphs and H-minor-free graphs, and treedepth characterizes optimal MWIS-formulas up to polynomials for all bounded degree graphs.