FIMM Metabolomics/Lipidomics/Fluxomics Unit (FIMM Meta)

 

Welcome to FIMM Metabolomics Unit (FIMM-Meta)

FIMM Metabolomics/Lipidomics/Fluxomics Unit, a core service facility, and member of the Biocentrer Finland and HiLIFE national infrastructure networks. Our technology platform offers services to researchers in many diverse scientific fields. Our core facility provides high-throughput mass spectrometry based targeted quantitative and global metabolomics/lipidomics and fluxomics services to basic, biomedical, preclinical and clinical researchers. We provide rapid analysis services for metabolites and lipids from different biological classes and various types of samples (biofluids, dried blood spots, cells, extracellular vesicles, cell organelle isolates, tissues, stool, biofilm, dental carries etc.) from humans, animal models (mouse, rat, dog etc.), C.elegans, drosophila, bacteria and yeast etc.

 

High-throughput tar­geted and quant­it­at­ive metabolomics

Analysis of hundreds of polar metabolites in a single method using MRM strategy. Suitable for tissues, cells, and biofluids.

Customized targeted quantitative metabolomics

Concentration analysis for ketonebodies, ketoacids, NADs, short-chain fatty acids, folate cycle intermediates or absolute quantification of TCA cycle intermediates. Suitable for tissues, cells, and biofluids.

High-throughput qual­it­at­ive metabolomics profiling and custom sets

Qualitative analysis of more than five hundred known standardized metabolites using high-resolution orbitrap Q-Exactive. Suitable also for small sample amounts (i.e. 30 000 cells or 15ul) for biofluids, tissues, cells, stem cells, organoids, spheres, and extracellular vesicles.

Metabolic flux analysis 

Isotope enrichment analysis and metabolic flux analysis of central carbon metabolism and other pathways using 13C-, 15N- and dH-tracers. Suitable also for small sample amounts (i.e. 30 000 cells or 10ul) for biofluids, tissues, cells, immune cells, stem cells, organoids, spheres, and extracellular vesicles.

High-through­put tar­geted and quant­it­at­ive lipidom­ics

Analysis of thousand lipid molecular species in a single method using the Lipidyzer platform. Suitable for biofluids (min 25ul), tissues, cells, and extracellular vesicles. More details (https://sciex.jp/content/dam/SCIEX/pdf/tech-notes/all/lipidyzer_platform_workflow.pdf)

Data analysis 

We offer via collaboration complete metabolomics/lipidomics data analysis using advanced biostatistical and chemometric methods including integrated omics data analysis, figures, tables, and metabolic pathway analysis. Reporting, data quality checks, and documentation are included in the service.

Meta­bolo­m­ics ana­lyt­ical meth­ods un­der de­vel­op­ment

New sample types taken into method development via collaboration. Contact the head of the unit.

De­mand-based meta­bolo­m­ics services and method development

We are open to develop new metabolomics analytical methods based on user demand. Contact the head of the unit.

 

Anni Nieminen-(Viheriäranta)

Senior Scientist, Head of the Unit
INSTITUTE FOR MOLECULAR MEDICINE FINLAND

+358 (0) 505352157
anni.nieminen@helsinki.fi

5500

Agilent 6550 Q-ToF

Thermo Q-Exective Orbitrap MSMS

Hamilton robot sample handling system

Sciex 6500 MSMS

Waters Xevo TQS MSMS

Sample types and requirements:

Sample Matrices type Sample Sub-matrices type

Minimum quantity for SRM

Minimum quantity for high-resolution orbitrap Minimum quantity for Lipidyzer

Biofluids

Serum, Plasma, Urine, Cell culture supernatants, Saliva, CSF, Bile, Cystic fluid etc. 110 µL 15-110 µL 30 µL
Cells Adherent, Suspension, Bone marrow, MEF, stem cells etc 1-2 x106 50 000-2x106 1 million
Tissues Muscle, Liver, Brain, Heart, Lung, Placenta, Spleen, Uterus, Pancreas, Testes etc 10-20 mg 10 mg 20mg
Faeces   20-50 mg 20 mg  
3D cultures Organoids and spheres   96-12 well  
Extracellular vesicles     25uL 25uL
C.elegans   2000-4000 worms    
Drosophila     10 larvae  
S.cerevisae       biomass
E.coli       biomass
Dried blood Spots punched spots      
 

General Instructions.

Sample Collections:  Quenching protocols for cell samples will be provided.
Sample storage:  Please store the samples at -80°C immediately after the collection.
Sample delivery:  Please deliver the frozen samples on dry ice to us.
Sample tubes:  If you are freshly collecting the samples then we would prefer to have the samples in 1.5 ml eppendorf tubes. If samples are already collected and stored in other types of tubes, no problem we can transfer them here.
Sample list:  Please send us the sample list on email fimm-metabolomics@helsinki.fi in an excel file format with all the relevant details i.e., sample names, genotype, phenotype, type of sample, oganism, age, gender, treatment information (dietary or drug), available clinical data, time series data, additional information, tissue weights, cell number, protein quantification if available, if you would like to have your extra samples back or not etc.
Pricing

Pricing is established according to University of Helsinki pricing guidlines, and rates per sample cover running costs, salaries of personnel, instrument maintenance and service contracts.

Pricing is subsidised for population cohorts (> 300 samples). Price rates vary for different samples types due to distinct extraction procedures.

Shipping address:

Laboratory co-ordinator

Metabolomics Unit, 
Institute for Molecular Medicine Finland FIMM
Biomedicum Helsinki 2U, room E204b
Tukholmankatu 8
00290 Helsinki, Finland

 

 

 

  1. Simultaneous Measurement of Tricarboxylic Acid Cycle Intermediates in Different Biological Matrices Using Liquid Chromatography–Tandem Mass Spectrometry; Quantitation and Comparison of TCA Cycle Intermediates in Human Serum, Plasma, Kasumi-1 Cell and Murine Liver Tissue. Rathod, R.; Gajera, B.; Nazir, K.; Wallenius, J.; Velagapudi, V.  Metabolites 2020, 10, 103. https://doi.org/10.3390/metabo10030103.
  2. Disruption of the mouse Shmt2 gene confers embryonic anaemia via foetal liver-specific metabolomic disorders. Sci Rep 9, 16054 (2019). Haruna T, Takayuki M, Vidya V, Kaori I, Moe U, Kazuto N, Anu S & Jun-Ichi H. https://doi.org/10.1038/s41598-019-52372-6.
  3. Repeated Transcranial Magnetic Stimulation-Induced Motor Evoked Potentials Correlate With the Subject-Specific Serum Metabolic Profile of Creatine. J Clin Neurophysiol. 2019 [Epub ahead of print].Kallioniemi E, Kärkkäinen O, Määttä S, Könönen M, Kivimäki P, Kaarre O, Velagapudi V, Kekkonen V, Lehto SM, Laukkanen E, Tolmunen T. PMID:30720554
  4. Epigenome-wide association study of serum cotinine in current smokers reveals novel genetically driven loci. Clin Epigenetics. 2019 Jan 5;11(1):1.Gupta R, van Dongen J, Fu Y, Abdellaoui A, Tyndale RF, Velagapudi V, Boomsma DI, Korhonen T, Kaprio J, Loukola A, Ollikainen M. PMID:30611298 
  5. Changes in the serum metabolite profile correlate with decreased brain grey matter volume in heavy-drinking young adults. Alcohol. 2019; 75:89-97. Heikkinen, N., Kärkkäinen, O., Laukkanen, E., Kekkonen, V., Kaarre, O., Kivimäki, P., Könönen, M., Velagapudi, V.Nandania, J., Lehto, S., Niskanen, E., Vanninen, R., Tolmunen, T. PMID:30513444
  6. Metabolomes of mitochondrial diseases and inclusion body myositis: treatment targets and biomarkers. EMBO Molecular Medicine. 2018  Dec;10(12).Buzkova, J., Nikkanen, J., Ahola, S., Hakonen, A., Sevastianova, K., Hovinen, T., Yki-Järvinen, H., Pietiläinen, K., Lönnqvist, T., Velagapudi, V., Carroll, C., Suomalainen, A.  PMID:30373890
  7. A Systems Approach to Study Immuno- and Neuro-Modulatory Properties of Antiviral Agents. Viruses. 2018 Aug 12;10(8).Zusinaite E, Ianevski A, Niukkanen D, Poranen MM, Bjørås M, Afset JE, Tenson T, Velagapudi V, Merits A, Kainov DE. PMID:30103549
  8. Simultaneous measurement of folate cycle metabolites using liquid chromatography-tandem mass spectrometry from different biological matrices. Journal of Chromatography B. 2018; 15:1092: 168-178.Nandania, J., Kokkonen, M., Euro, L, Velagapudi, V.  PMID:29906678
  9. Adipose tissue mitochondrial gene expression profile associates with long-term weight loss success. International Journal of Obesity. 2018; 42;817–825. Jokinen, R., Rinnankoski-Tuikka, R., Kaye, S., Saarinen, L., Heinonen, S., Myöhänen, M., Rappou, E., Jukarainen, S., Kaprio, J., Rissanen, A., Pessia, A., Velagapudi, V., Virtanen, K., Pirinen, E and Pietiläinen, K. PMID:29203860
  10. Validation and automation of high-throughput multi-targeted method for semi-quantification of endogenous metabolites from different biological matrices using tandem mass spectrometry. Metabolites. 2018; 5:8:3. Nandania, J., Peddinti, G., Pessia, A., Kokkonen, M., Velagapudi, V. PMID:30081599
  11. Pre-analytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for “Precision Medicine and Pharmacometabolomics Task Group” – The Metabolomics Society Initiative). Clinical Chemistry. 2018; 64:8:1158-1182. Kirwan, J., Brennan, L., Broadhurst, D., Fiehn, O., Cascante, M., Dunn, W., Schmidt, M., Velagapudi, V.  PMID:29921725
  12. Plasma metabolites reveal distinct profiles associating with different metabolic risk factors in monozygotic twin pairs. International Journal of Obesity. 2018;Muniandy, M., Velagapudi, V., Hakkarainen, A., Lundbom, J., Lundbom, N., Rissanen, A., Kaprio, J., Pietiläinen, K., Ollikainen, M. PMID:29907843
  13. Understanding the metabolic burden of recombinant antibody production in Saccharomyces cerevisiae using a quantitative metabolomics approach. Yeast. 2018; 35(4):331-341. De Ruijter, J., Koskela, E., Nandania, J., Frey, A., Velagapudi, V. PMID: 29159981
  14. Global arginine bioavailability ratio is decreased in patients with major depressive disorder. Journal of Affective Disorders. 2018; 15;229:145. Ali-Sisto, T., Tolmunen, T., Toffol, E., Viinamäki, H., Mäntyselkä, P., Valkonen-Korhonen, M., Honkalampi, K., Ruusunen, A., Velagapudi, V., Lehto, S.M. PMID:29310063
  15. Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C.elegans. Cell. Scott TA, Quintaneiro LM, Norvaisas P, Lui PP, Wilson MP, Leung KY, Herrera-Dominguez L, Sudiwala S, Pessia A, Clayton PT, Bryson K, Velagapudi V, Mills PB, Typas A, Greene NDE, Cabreiro F. (2017). PMID:2843124
  16. Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins.  Viruses. 2017; 9, 271. Bulanova, D., Ianevski, A., Bugai, A., Akimov, Y., Kuivanen, S., Paavilainen, H., Kakkola, L., Nandania, J., Turunen, L., Ohman, T., Ala-Hongisto, H., Pesonen, H.M., Kuisma, M.S., Honkimaa, A., Walton, E.L., Oksenych, V., Lorey, M.B., Guschin, D., Shim, J., Kim, J., Than, T.T., Chang, S.Y., Hukkanen, V., Kulesskiy, E., Marjomaki, V.S., Julkunen, I., Nyman, T.A., Matikainen, S., Saarela, J.S., Sane, F., Hober, D., Gabriel, G., De Brabander, J.K., Martikainen, M., Windisch, M.P., Min, J.Y., Bruzzone, R., Aittokallio, T., Vähä-Koskela, M., Vapalahti, O., Pulk, A., Velagapudi, V., Kainov, D.E. PMID:28946654
  17. mTORC1 Regulates Mitochondrial Folate Cycle and the Integrated Stress Response in Mitochondrial Disease. Cell Metabolism. 2017; 26(2):419-428. Khan, N.A., Nikkanen, J., Yatsuga, S., Wang, L., Jackson, C., Pessia, A., Riikka Kivelä, Velagapudi, V., Anu Suomalainen. PMID:28768179
  18. Metabolomic profiling of extracellular vesicles and alternative normalisation methodsreveal enriched metabolites and strategies to study prostate cancer related changes. Puhka, M., Takatalo, M., Nordberg, M.E., Valkonen, S., Nandania, J., Aatonen, M., Yliperttula, M., Laitinen, S., Velgapudi, V., Mirtti, T., Kallioniemi, O., Rannikko, A., Siljander, P.R.M., af Hallstrom, T.M. Theranostics. 2017; 7(16): 3824-3841. 
  19. Ketogenic diet attenuates hepatopathy in mouse model of respiratory chain complex III deficiency caused by a Bcs1l mutation. Scientific Reports. Purhonen, J., Rajendran, J., Mörgelin, M., Uusi-Rauva, K., Katayama, S., Krjutskov, K., Einarsdottir, E., Velagapudi, V., Kere, J., Jauhiainen, M., Fellman, V., Kallijärvi, J. (2017). PMID:28424480
  20. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. The FASEB Journal. Vorrink, S..U., Ullah, S., Schmidt, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg, M., Lauschke, V.M. (2017). ​​​​​​​PMID:28264975
  21. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs.  Journal of Cell Biology. Schatton, D., Pla-Martin, D., Marx, M.C., Hansen, H., Mourier, A., Nemazanyy, I., Pessia, A., Zentis, P., Corona, T. Kondylis, V., Barth, E., Schauss, A.C., Velagapudi, V., Rugarli, E. (2017).PMID:28188211
  22. Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology. Disease Models and Mechanisms. Szibor, M., Dhandapani, PK., Dufour, E., Holmström, KM., Zhuang, Y., Salwig, I., Wittig, I., Heidler, J., Gizatullina, Z., Gainutdinov, T., Consortium, GM., Fuchs, H., Gailus-Durner, V., de Angelis, MH., Nandania, J., Velagapudi, V., Wietelmann, A., Rustin, P., Gellerich, FN., Jacobs, HT., Braun, T. (2017). PMID:28067626
  23. Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Research. Kuivanen, S., Bespalov, MM., Nandania, J., Ianevski, A., Velagapudi, V., De Brabander, JK., Kainov, DE., Vapalahti, O. (2017). ​​​​​​​PMID:28049006.
  24. Regulation of Kynurenine Biosynthesis during Influenza Virus Infection. The FEBS Journal. Gaelings, L., Söderholm, S., Bugai, A., Fu, Y., Nandania, J., Schepens, B., Lorey, M.B., Tynell, J., Ginste, L.S., Goffic, R.L., Miller, M.S., Kuisma, M., Marjomäki, V., Brabander, J.D., Matikainen, S., Nyman, T.A., Bamford, D., Saelens, X., Julkunen, I., Paavilainen, H., Hukkanen, V., Velagapudi, V., Kainov, D.E. (2017).PMID:27860276
  25. The association between musculoskeletal pain and circulating ornithine – A population-based study. Pain Medicine. Mäntyselkä, P., Ali-Sisto, T., Kautiainen, H., Savolainen, J., Niskanen, L., Viinamäki, H., Velagapudi, V., Lehto, S.M. (2016).PMID:28034972
  26. Combined immunodeficiency with hypoglycemia caused by mutations in hypoxia up-regulated 1The Journal of Allergy and Clinical Immunology. Haapaniemi, E., Fogarty, C., Katayama, S., Vihinen, H., Keskitalo, S., Ilander, M., Krjutškov, K., Mustjoki, S., Lehto, M., Hautala, T., Jokitalo, E., Velagapudi, V., Varjosalo, M., Seppänen, M., Kere, J. (2016). PMID:27913302
  27. Effect of high-carbohydrate diet on plasma metabolomics in mice with mitochondrial respiratory chain complex III deficiency due to a Bcs1l mutation. International Journal of Molecular Sciences. Rajendran, J., Tomašić, N., Kotarsky, H., Hansson, E., Velagapudi, V., Kallijärvi, J., Fellman, V. (2016). PMID:27809283
  28. Activation of Tryptophan and Phenylalanine Catabolism in the Remission Phase of Allergic Contact Dermatitis: A Pilot Study. International Archives of Allergy and Immunology. Zinkevičienė A, Kainov D, Girkontaitė I, Lastauskienė E, Kvedarienė V, Fu Y, Anders S, Velagapudi V. (2016). PMID: 27771694
  29. Fecal and serum metabolomics in pediatric inflammatory bowel disease. Journal of Crohn’s and ColitisKolho, K-L., Pessia, A., Jaakkola, T., de Vos, W., Velagapudi, V. (2016).  PMID: 27609529
  30. Modified Atkins diet induces subacute selective ragged red fiber lysis in mitochondrial myopathy patients. EMBO Molecular Medicine. Ahola, S., Auranen, M., Isohanni, P., Niemisalo, S., Buzkova, J., Velagapudi, V., Lundbom, N., Hakkarainen, A., Piirilä, P., Pietiläinen, K., Suomalainen, A. (2016).  PMID: 27647878 Press release
  31. The Pentose Phosphate Pathway Regulates the Circadian Clock. (2016). Cell Metabolsim.  Rey, G., Valekunja, U.K., Feeney, K.A., Wulund, L., Milev, N.B., Stangherlin, A., Bollepalli, L., Velagapudi, V., O’Neill, J.S., Reddy, A.B.PMID: 27546460
  32. JNJ872 inhibits influenza A virus replication without altering cellular antiviral responses. Antiviral Research.  Fu Y, Gaelings L, Söderholm S, Belanov S, Nandania J, Nyman TA, Matikainen S, Anders S, Velagapudi V, Kainov DE. (2016). PMID: 27451344
  33. GATA4 regulates blood-testis barrier function and lactate metabolism in mouse Sertoli cells. Endocriniology. Schrade, A., Kyrönlahti, A., Akinrinade, O., Pihlajoki, M., Fischer, S., Martinez Rodriguez, V., Velagapudi V, Toppari, J., Wilson, DB., Heikinheimo, M. (2016). PMID: 26974005
  34. Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology. Ali-Sisto, T., Tolmunen, T., Toffol, E., Viinamäki, H., Mäntyselkä, P., Valkonen-Korhonen, M., Honkalampi, K., Ruusunen, A., Velagapudi V, Lehto, S.M. (2016). MID: 27153521
  35. Mitochondrial DNA Replication Defects Disturb Cellular dNTP Pools And Remodel One-Carbon Metabolism. Cell Metabolism. Nikkanen J, Forsström S, Euro L, Paetau I, Kohnz R.A, Wang L, Chilov D, Viinamäki J, Roivainen A, Marjamäki P, Liljenbäck H, Ahola S, Buzkova J, Terzioglu M, Khan N.A, Pirnes-Karhu S, Paetau A, Lönnqvist T, Sajantila A, Isohanni P, Tyynismaa H, Nomura D.K, Battersby B, Velagapudi V, Carroll C.J, Suomalainen A. (2016). PMID: 26924217
  36. GATA4 is a key regulator of steroidogenesis and glycolysis in mouse Leydig cells. Endocrinology. Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Häkkinen M, Fischer S, Alastalo T.P, Velagapudi V, Toppari J, Wilson D.B, Heikinheimo M (2015). PMID: 25668067
  37. Vitamin B12–dependent taurine synthesis regulates growth and bone mass. Journal of Clinical Investigation. Roman-Garcia P, Quiros-Gonzalez I, Mottram L, Lieben L, Sharan K, Wangwiwatsin A, Tubio J, Lewis K, Wilkinson D, Santhanam B, Sarper N, Clare S, Vassiliou GS, Velagapudi V, Dougan G, Yadav V.K. (2014).PMID: 24911144
  38. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Molecular Medicine. Khan N.A, Auranen M, Paetau I, Pirinen E, Euro L, Forsström S, Pasila L, Velagapudi V, Carroll C.J, Auwerx J, Suomalainen A. (2014). PMID: 24711540​​​​​​​