Finnish Biological NMR Center

The mission of the Finnish Biological NMR Center is to carry out academic research dedicated to improving the understanding of biomolecules, and provide quality services in the field of NMR spectrometry. We offer access to state-of-the-art equipment and the expertise of our staff to further your research.

Instruct-ERIC Centre Finland / NMR

NMR services are part of Instruct-ERIC Centre Finland and can be accessed also through Instruct-ERIC (Instruct Centre Finland / NMR and Protein production with Isotope Labelling for NMR service home pages). See funding possibilities for Instruct-ERIC access.

  • Basic and advanced NMR services

Our High-field NMR instruments are perfect non-destructive tool to e.g.:

  • Determine structure of a macromolecule in liquid state
  • Study protein-ligand and protein-protein interactions in liquid state
  • Characterise dynamics of a macromolecule over a wide range of time scales
  • Determine protein size with Diffusion spectroscopy
  • Analyse protein backbone dynamics
  • Study effects of a mutation to structure
  • 19F measurements
  • Small molecule NMR

NMR sample should be soluble to NMR solvents and contain no solid particles.
The buffer should not contain any other small molecules (eg. HEPES, TRIS, EDTA).
Salt concentration should be as low as possible, <100 mM.

  • Preferred solvents
    • 5% D2O:H2O for protein samples
    • D2O, CDCl3, DMSO-D6, Acetone-D6
  • Minimum Volume
    • 500 µl for 5 mm tube
    • 250 µl for 5mm Shigemi tube
  • Minimum Concentrations
    • 0.05 mM for 1H experiment
    • 0.1 mM for 2D experiments
    • 0.1 - 0.3 mM  for protein NMR
  • NMR Core facility is open to both academic and commercial users.
  • Customers are served based on reservations made in the Reservation book
  • Please contact grp-nmrservice[at] to start a project
  • Acknowledgements: User agrees to acknowledge the NMR center in the upcoming publications and theses with e.g. the following text:
    "The facilities and expertise of the HiLIFE NMR unit at the University of Helsinki, a member of Instruct-ERIC Centre Finland, FINStruct, and Biocenter Finland are gratefully acknowledged."
  • Users agree to send the bibliography of the published material (scientific papers, theses) to grp-nmrservice[at]

Updated 23.8.2019

UH/BF user
(University of Helsinki and Biocenter Finland)

Spectrometer time WITH OPERATOR
  Charges €/h
  1st & 2nd hour 3rd to 6th hour 7th hour onwards
850 MHz TCI CryoProbe 235 €/h 120 €/h 10 €/h
600 MHz BB SmartProbe 40 €/h 20 €/h 3 €/h
600 MHz TCI CryoProbe 80 €/h 40 €/h 6 €/h
Spectrometer time WITHOUT OPERATOR
850 MHz TCI CryoProbe 10 €/h    
600 MHz BB SmartProbe 3 €/h    
600 MHz TCI CryoProbe 6 €/h    

Academic user (non UH/BF)

Spectrometer time WITH OPERATOR
  Charges €/h
  1st & 2nd hour 3rd to 6th hour 7th hour onwards
850 MHz TCI CryoProbe 250 €/h 150 €/h 55 €/h
600 MHz BB SmartProbe 60 €/h 30 €/h 10 €/h
600 MHz TCI CryoProbe 100 €/h 50 €/h 15 €/h
Spectrometer time WITHOUT OPERATOR
850 MHz TCI CryoProbe 55 €/h    
600 MHz BB SmartProbe 10 €/h    
600 MHz TCI CryoProbe 15 €/h    

Non-academic user

Spectrometer time WITH OPERATOR
  Charges €/h
  1st & 2nd hour 3rd to 6th hour 7th hour onwards
850 MHz TCI CryoProbe 310 €/h 260 €/h 235 €/h
600 MHz BB SmartProbe 100 €/h 70 €/h 40 €/h
600 MHz TCI CryoProbe 150 €/h 90 €/h 60 €/h
Spectrometer time WITHOUT OPERATOR
850 MHz TCI CryoProbe 235 €/h    
600 MHz BB SmartProbe 40 €/h    
600 MHz TCI CryoProbe 60 €/h    


NMR tubes Academic (Non-academic)
5 mm, normal 2 € (3 €)
3 mm, normal 17 € (20 €)
5 mm, shigemi  
4 mm, shigemi  
3 mm, shigemi  
Solvents €/sample
D2O 1 €/sample (1 €/sample)
DMSO-D6 3 €/sample (4 €/sample)
CDCl3 1 €/sample (1 €/sample)
MeOD-D4 9 €/sample (10 €/sample)
Acetone-D6 4 €/sample (5 €/sample)
Prices for other solvents on request  



  • Heikkinen, H.A., Backlund, S.M., Iwaï, H. (2021) NMR Structure Determinations of Small Proteins Using only One Fractionally 20% 13C- and Uniformly 100% 15N-Labeled Sample. Molecules. 2021; 26(3):747.

  • Hsu, S. D., Lee, Y. C., Mikula, K. M., Backlund, S. M., Tascón, I., Goldman, A., & Iwaï, H. (2021) Tying up the Loose Ends: A Mathematically Knotted Protein. Frontiers in chemistry, 9, 663241. DOI:10.3389/fchem.2021.663241 

  • Hiltunen, M.K., Beyer, H.M., Iwaï, H. (2021) Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins. Microorganisms 2021, 9, 1226.

  • Eesmaa, A., Yu, L.Y., Göös, H., Nõges, K., Kovaleva, V., Hellman, M., Zimmermann, R., Jung, M., Permi, P., Varjosalo, M., Lindholm, P., Saarma, M. (2021) The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J Biol Chem. 2021 Jan-Jun;296:100295. DOI: 10.1016/j.jbc.2021.100295.


  • Viisanen, H., Nuotio, U., Kambur, O., Mahato, A.K., Jokinen, V., Lilius, T., Li, W., Santos, H.A., Karelson, M., Rauhala, P., Kalso, E., & Sidorova, Y.A. (2020). Novel RET agonist for the treatment of experimental neuropathies. Molecular Pain. January 2020. DOI: 10.1177/1744806920950866

  • Duplouy, A., Minard, G., Saastamoinen, M. (2020). The gut bacterial community affects immunity but not metabolism in a specialist herbivorous butterfly. Ecol Evol. 2020; 10: 8755– 8769.

  • Mattila, A.L.K., Jiggins, C.D., Opedal, Øystein, H., Montejo-Kovacevich, G., de Castro, É., McMillan, W.O., Bacquet, C., Saastamoinen, M. (2020), High evolutionary potential in the chemical defenses of an aposematic Heliconius butterfly, bioRxiv 2020.01.14.905950, DOI:10.1101/2020.01.14.905950

  • Carvalho, D.M.D., Lahtinen, M.H., Lawoko, M., Mikkonen, K.S. (2020), Enrichment and Identification of Lignin–Carbohydrate Complexes in Softwood Extract, ACS Sustainable Chem. Eng. 2020, 8, 31, 11795–11804, DOI:10.1021/acssuschemeng.0c03988

  • Beyer, H.M., Virtanen, S.I., Aranko, A.S., Mikula, K.M., Lountos, G.T., Wlodawer, A., Ollila, O.H.S., Iwaï, H. (2020), The Convergence of the Hedgehog/Intein Fold in Different Protein Splicing Mechanisms,  Int J Mol Sci. 2020 Nov 7;21(21):8367, DOI:10.3390/ijms21218367 

  • Virtanen, S.I., Kiirikki, A.M., Mikula, K.M., Iwaï, H., Ollila, O.H.S. (2020), Heterogeneous dynamics in partially disordered proteins, Phys. Chem. Chem. Phys., 2020,22, 21185-21196, DOI:10.1039/d0cp03473h

  • Oeemig, J.S., Beyer, H.M., Aranko, A.S., Mutanen, J., Iwaï, H. (2020), Substrate specificities of inteins investigated by QuickDrop-cassette mutagenesis, FEBS Lett. 2020 Aug 17, DOI:10.1002/1873-3468.13909.

  • Jaakkonen, A., Volkmann, G., Iwaï, H. (2020), An Off-the-Shelf Approach for the Production of Fc Fusion Proteins by Protein Trans-Splicing towards Generating a Lectibody In Vitro, Int. J. Mol. Sci. 2020, 21(11), 4011, DOI:10.3390/ijms21114011.

  • Ciragan, A., Backlund, S.M., Mikula, K.M., Beyer, H.M., Ollila, O.H.S., Iwaï, H. (2020) NMR Structure and Dynamics of TonB Investigated by Scar-Less Segmental Isotopic Labeling Using a Salt-Inducible Split Intein. Front. Chem., 19 March 2020, DOI: 10.3389/fchem.2020.00136
  • Mahato, A.K., Kopra, J., Renko, J.‐M., Visnapuu, T., Korhonen, I., Pulkkinen, N., Bespalov, M.M., Domanskyi, A., Ronken, E., Piepponen, T.P., Voutilainen, M.H., Tuominen, R.K., Karelson, M., Sidorova, Y.A. and Saarma, M. (2020), Glial cell line–derived neurotrophic factor receptor Rearranged during transfection agonist supports dopamine neurons in Vitro and enhances dopamine release In Vivo. Mov Disord, 35: 245-255. doi:10.1002/mds.27943


  • Beyer, H.M., Mikula, K.M., Li, M., Wlodawer, A., Iwaï, H. (2019) The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from cis-splicing inteins. FEBS J. 2019 Oct 30, DOI: 10.1111/febs.15113

  • Beyer, H.M., Iwaï, H. (2019) Off-Pathway-Sensitive Protein-Splicing Screening Based on a Toxin/Antitoxin System. Chembiochem. 2019 Aug 1;20(15):1933-1938. DOI: 10.1002/cbic.201900139

  • Minard, G., Tikhonov, G., Ovaskainen, O., Saastamoinen, M. (2019) The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ Microbiol, 21: 4253-4269. doi:10.1111/1462-2920.14786

  • Mollerup, F., Aumala, V., Parikka, K., Mathieu, Y., Brumer, H., Tenkanen, M., Master, E. (2019) A family AA5_2 carbohydrate oxidase from Penicillium rubens displays functional overlap across the AA5 family. PLOS ONE 14(5): e0216546.

  • Agustin, M.B., Penttilä, P.A., Lahtinen, M., Mikkonen, K.S. (2019) Rapid and Direct Preparation of Lignin Nanoparticles from Alkaline Pulping Liquor by Mild Ultrasonication, ACS Sustainable Chem. Eng. 2019, DOI: 10.1021/acssuschemeng.9b05445

  • Mattila, A., Andsten, R.M., Jumppanen, M., Assante, M., Jokela, J., Wahlsten, M., Mikula, K.M., Sigindere, C., Kwak, D.H., Gugger, M., Koskela, H., Sivonen, K., Liu, X., Yli-Kauhaluoma, J., Iwai, H., Fewer, D.P. (2019) Biosynthesis of the bis-prenylated alkaloids muscoride A and B. ACS Chem. Biol., DOI: 10.1021/acschembio.9b00620

  • Valoppi, F., Lahtinen, M.H., Bhattarai, M., Kirjoranta, S.J., Juntti, V.K., Peltonen, L.J., Kilpeläinen, P.O., Mikkonen, K.S. (2019) Centrifugal fractionation of softwood extracts improves the biorefinery workflow and yields functional emulsifiers. Green Chem. vol 21 4691-4705, DOI: 10.1039/c9gc02007a

  • Beyer, H.M., Mikula, K.M., Kudling, T.V., Iwai, H. (2019) Crystal structures of CDC21-1 inteins from hyperthermophilic archaea reveal the selection mechanism for the highly conserved homing endonuclease insertion site, Extremophiles 23: 669. DOI: 10.1007/s00792-019-01117-4


  • Shiraishi, Y., Natsume, M., Kofuku, Y., Imai, S., Nakata, K., Mizukoshi, T., Ueda, T., Iwaï, H. & Shimada, I. (2018) Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR, Nat. Commun. 9:194. DOI: 10.1038/s41467-017-02632-8

  • Oeemig, J.S., Ollila, O.H.S., Iwaï, H. (2018) NMR structure of the C-terminal domain of TonB protein from Pseudomonas aeruginosa, PeerJ 6:e5412, DOI: 10.7717/peerj.5412

  • Ollila, O.H.S, Heikkinen, H.A., Iwai, H. (2018) Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations, J. Phys. Chem. B. 122, 25. DOI: 10.1021/acs.jpcb.8b02250

  • Tossavainen, H., Raulinaitis, V., Kauppinen, L., Pentikäinen, U., Maaheimo, H., Permi, P. (2018) Structural and Functional Insights Into Lysostaphin–Substrate Interaction, Front Mol Biosci. 2018; 5: 60. DOI: 10.3389/fmolb.2018.00060

  • King, A.W.T., Mäkelä, V., Kedzior, S.A., Laaksonen, T., Partl, G.J., Heikkinen, S., Koskela, H., Heikkinen, H.A., Holding, A.J., Cranston, E.D., Kilpeläinen, I. (2018) Liquid-State NMR Analysis of Nanocelluloses, Biomacromolecules, DOI: 10.1021/acs.biomac.8b00295

  • Mikula, K.M., Krumwiede, L., Plückthun, A., Iwai, H. (2018) Segmental isotopic labeling by asparaginyl endopeptidase-mediated protein ligation, J Biomol NMR Doi:10.1007/s10858-018-0175-4

  • Norppa, A.J., Kauppala, T.M., Heikkinen, H.A., Verma, B., Iwaï, H. & Frilander, M.J. (2018) Mutations in the U11/U12-65K protein associated with isolated growth hormone deficiency lead to structural destabilization and impaired binding of U12 snRNA. RNA in press doi: 10.1261/rna.062844.117.


  • Johansson, M. P., Maaheimo, H., & Ekholm, F. S. (2017). New insight on the structural features of the cytotoxic auristatins MMAE and MMAF revealed by combined NMR spectroscopy and quantum chemical modelling. Scientific reports, 7(1), 15920.

  • Minato, Y., Ueda, T., Machiyama, A., Iwaï, H. & Shimada, I. (2017) Dynamic domain arrangement of CheA-CheY complex regulates bacterial thermotaxis, as revealed by NMR, Sci Rep. 2017 Nov 28;7(1):16462. DOI: 10.1038/s41598-017-16755-x

  • Iwaï. H., Mikula, K.M., Oeemig, J.S., Zhou,D. Li, M., & Wlodawer, A. (2017) Structural basis for the persistence of homing endonucleases in transcription factor IIB inteins. J. Mol. Biol. 429, 3942–3956. doi:10.1016/j.jmb.2017.10.016

  • Otrusinová. O., Demo, G., Padrta, P., Jaseňáková, Z., Pekárová, B., Gelová, Z., Szmitkowska, A., Kadeřávek, P., Jansen, S., Zachrdla, M., Klumpler, T., Marek, J., Hritz, J., Janda, L., Iwaï, H., Wimmerová, M., Hejátko, J., Žídek, L. (2017) Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana. J Biol Chem. 2017 Oct 20;292(42):17525-17540. DOI: 10.1074/jbc.M117.790212

  • Raulinaitis, V., Tossavainen, H., Aitio, O., Juuti, J.T., Hiramatsu, K., Kontinen, V., Permi, P. (2017) Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family. Scientific Reports 7, Article number: 6020. doi:10.1038/s41598-017-06135-w

  • Mikula, K. M., Tascón, I., Tommila, J. J., Iwaï, H. (2017) Segmental isotopic labeling of a single-domain globular protein without any refolding step by an asparaginyl endopeptidase. FEBS Lett. 591: 1285–1294. doi:10.1002/1873-3468.12640
  • Ahlstrand, T., Tuominen, H., Beklen, A., Torittu, A., Oscarsson, J., Sormunen, R., Pöllänen, M. T., Permi, P., Ihalin, R. (2017) A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8. Virulence 2017; 8(2): 115-134; PMID:27459270; doi: 10.1080/21505594.2016.1216294
  • Raulinaitis, V., Tossavainen, H., Aitio, O., Seppälä, R., Permi, P. (2017) 1H, 13C and 15N resonance assignments of the new lysostaphin family endopeptidase catalytic domain from Staphylococcus aureus.  Biomol NMR Assign 11: 69. doi:10.1007/s12104-016-9722-7


  • Ciragan, A., Aranko, A. S., Tascon, I., Iwaï, H. (2016) Salt-inducible protein splicing in cis and trans by inteins from extremely halophilic archaea as a novel protein-engineering tool. J. Mol. Bio 428, 4573-4588.
  • Jin, C., Viidanoja, J., Li, M., Zhang, Y., Ikonen, E., Root, A., Romanczyk, M., Manheim, J., Dziekonski, E., Kenttämaa, H. I. (2016) Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons. Anal. Chem. 88 (21), 10592-10598. DOI: 10.1021/acs.analchem.6b02789
  • Laitaoja, M., Tossavainen, H., Pihlajamaa, T., Valjakka, J., Viiri, K., Lohi, O., Permi, P., Jänis, J. (2016), Redox-dependent disulfide bond formation in SAP30L corepressor protein: Implications for structure and function. Protein Sci, 25: 572–586
  • Tossavainen, H., Aitio, O., Hellman, M., Saksela, K., Permi, P. ( 2016) Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2. J. Biol. Chem. 291, 16307– 16317, DOI: 10.1074/jbc.M116.732412
  • Harju, K., Koskela, H., Kremp, A., Suikkanen, S., de la Iglesia, P., Miles, C. O., Krock, B., Vanninen, P. (2016) Identification of gymnodimine D and presence of gymnodimine variants in the dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Toxicon, 112 pp. 68–76


  • Vegh, R. B., Bloch, D. A., Bommarius, A. S., Verkhovsky, M., Pletnev, S., Iwaï, H., Bochenkova, A. V., Solntsev, K. M. (2015) Hidden Photoinduced Reactivity of the Blue Fluorescent Protein mKalama1. Phys. Chem. Chem. Phys., 17(19):12472-12485. DOI: 10.1039/c5cp00887e
  • Guerrero, F., Ciragan, A., Iwaï, H. (2015) Tandem SUMO fusion vectors for improving soluble protein expression and purification. Protein Expression Purif. 116, 42–49.
  • Tossavainen, H., Seppälä, J., Sethi, R., Pihlajamaa, T., Permi, P. (2015) HN, NH, Cα, Cβ, and methyl group assignments of filamin multidomain fragments IgFLNc4–5 and IgFLNa3–5. Biomol NMR Assign 9: 47. doi:10.1007/s12104-014-9542-6
  • Piirainen H., Hellman M., Tossavainen H., Permi P., Kursula P. and Jaakola V. P. (2015) Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner. Biophys. J. 108, 903–917. DOI: 10.1016/j.bpj.2014.12.036
  • Liu, L., Budnjo, A., Jokela, J., Haug, B. E., Fewer, D. P, Wahlsten, M., Rouhiainen, L., Permi, P., Fossen, T., Sivonen, K. (2015) Pseudoaeruginosins, Nonribosomal Peptides in Nodularia spumigena. ACS Chem. Biol. 10 (3), 725-733. DOI: 10.1021/cb5004306
  • Shishido, T. K., Humisto, A., Jokela, J., Liu, L., Wahlsten, M., Tamrakar, A., Fewer, D. P., Permi, P., Andreote, A. P. D., Fiore, M. F., Sivonen, K. (2015) Antifungal Compounds from Cyanobacteria. Mar. Drugs 13, 2124-2140. DOI:10.3390/md13042124
  • Tossavainen, H., Hellman, M., Piirainen, H. Jaakola, V. P., Permi, P. (2015) HN, N, Cα, Cβ and C′ assignments of the intrinsically disordered C-terminus of human adenosine A2A receptor. Biomol NMR Assign 9: 403. doi:10.1007/s12104-015-9618-y
  • Seppälä, J., Tossavainen, H., Rodic, N., Permi, P., Pentikäinen, U., Ylänne, J. (2015). Flexible structure of peptide-bound filamin A mechanosensor domain pair 20-21. PLoS One, 10(8) doi:
  • Martikainen, M., Salorinne, K., Lahtinen, T., Malola, S., Permi, P., Häkkinen, H., Marjomaki, V. (2015) Hydrophobic Pocket Targeting Probes for Enteroviruses. Nanoscale 7, 17457– 17467, DOI: 10.1039/C5NR04139B


  • Aranko, A. S., Oeemig, J. S., Zhou, D., Kajander, T., Wlodawer, A., Iwaï, H. (2014) Structure-based engineering and comparison of novel split inteins for protein ligation. Mol. Biosyst. 10 (5), 1023 - 1034 DOI: 10.1039/c4mb00021h
  • Aranko, A. S., Wlodawer, A., Iwaï, H. (2014) Nature’s recipe for splitting inteins. Protein Eng. Des. Sel. 27(8), 263–271. DOI:10.1093/protein/gzu028
  • Shunmugam, S., Jokela, J., Wahlsten, M., Battchikova, N., Rehman, A. U., Vass, I., Karonen, M., Sinkkonen, J., Permi, P., Sivonen, K., Aro, E.-M., Allahverdiyeva, Y. (2014) Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of Synechocystis PCC 6803. Plant Cell Environ. 37: 1371–1381. doi:10.1111/pce.12243
  • Hellman, M., Piirainen, H., Jaakola, V. P., Permi, P. (2014) Bridge over troubled proline: assignment of intrinsically disordered proteins using (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H experiments concomitantly with HNCO and i(HCA)CO(CA)NH. J. Biomol. NMR 58: 49. doi:10.1007/s10858-013-9804-0
  • Sethi, R., Seppälä, J., Tossavainen, H., Ylilauri, M., Ruskamo, S., Pentikäinen, O. T., Pentikäinen, U., Permi, P., Ylänne, J. (2014) A Novel Structural Unit in the N-terminal Region of Filamins. J. Biol. Chem. 289: 8588–98. pmid:24469451 DOI: 10.1074/jbc.M113.537456 
  • Vestola, J., Shishido T. K., Jokela, J., Fewer, D. P., Aitio, O., Permi, P., Wahlsten, M., Wang, H., Rouhiainen, L., Sivonen, K. (2014) Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. PNAS 111 (18) E1909-E1917, doi:10.1073/pnas.1320913111 
  • Tossavainen, H., Kukkurainen, S., Määttä, J. A. E., Kähkönen, N., Pihlajamaa, T., Hytönen, V. P., Kulomaa, M. S., Permi, P. (2014) Chimeric Avidin – NMR Structure and Dynamics of a 56 kDa Homotetrameric Thermostable Protein. PLoS ONE 9(6): e100564.
  • Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y. Z., Xhaard, H., Fewer D.P., Sivonen K. (2014) Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium Nostoc sp. Strain FSN. J. Nat. Prod. 77 (8), 1784-1790 DOI: 10.1021/np500106w
  • Liu, L., Jokela, J., Herfindal, L., Wahlsten, M., Sinkkonen, J., Permi, P., Fewer, D. P., Døskeland, S. O., Sivonen, K. (2014) 4-Methylproline Guided Natural Product Discovery: Co-Occurrence of 4-Hydroxy- and 4-Methylprolines in Nostoweipeptins and Nostopeptolides. ACS Chem. Biol. 9 (11), 2646-2655 DOI: 10.1021/cb500436p


  • Aranko, A. S., Oeemig, J. S., Iwaï, H. (2013) Structural basis for protein trans-splicing by a Bacterial Intein-Like domain: protein ligation without nucleophilic side-chains. FEBS J. 280, 3256-3269 
  • Bhattacharjee, A., Oeemig, J. S., Kolodziejczyk, R., Meri, T., Kajander, T., Iwaï, H., Jokiranta, T. S., Goldman, A. (2013) Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi. J. Biol. Chem. 288, 18685-18695
  • Aranko, A. S., Oeemig, J. S., Kajander, T., Iwaï H. (2013) Intermolecular domain swapping induces intein-mediated protein alternative splicing. Nat. Chem. Biol. 9, 616–622
  • Pihlajamaa, T., Kajander, T., Knuuti, J., Horkka, K., Sharma, A., Permi, P. (2013) Structure of Plasmodium falciparum TRAP (thrombospondin-related anonymous protein) A domain highlights distinct features in apicomplexan von Willebrand factor A homologues. Biochemical J.  450 (3) 469-476; DOI: 10.1042/BJ20121058 
  • Tossavainen, H., Helppolainen, S. H., Määttä, J. A. E., Pihlajamaa, T., Hytönen, V. P., Kulomaa, M. S., Permi, P. (2013) Resonance assignments of the 56 kDa chimeric avidin in the biotin-bound and free forms. Biomol NMR Assign 7: 35. doi:10.1007/s12104-012-9371-4
  • Leikoski, N., Liu, L., Jokela, J., Wahlsten, M., Gugger, M., Calteau, A., Permi, P., Kerfeld, C. A., Sivonen, K., Fewer, D. P. (2013) Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem Biol 2013, 1033–1043, doi: 10.1016/j.chembiol.2013.06.015
  • Fewer, D. P., Jokela, J., Paukku, E., Österholm, J., Wahlsten, M., Permi, P., Aitio, O., Rouhiainen, L., Gomez-Saez, G. V., Sivonen, K. (2013) New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena. PLoS ONE 8(9): e73618. doi: 10.1371/journal.pone.0073618