Speakers

Plenary and Invited Speakers include:

Patricia Bassereau

Affiliation:

Centre de Recherche, Institut Curie, Paris F-75248, France

Scientific interests:

Patricia Bassereau aims to broaden the understanding of the role of lipid membranes and associated proteins in essential cellular functions, such as intracellular trafficking, endo/exocytosis, cell infection, transmembrane transport of ions and protein diffusion. Her group employs multidisciplinary research approaches based on synthetic biology, biomimetic systems and quantitative physical measurements.

Publication highlights:

M. Simunovic, J.-B. Manneville, H.-F. Renard, E. Evergren, K. Raghunathan, D. Bhatia, A. K. Kenworthy, G. A. Voth, J. Prost, H. T. McMahon, et al., “Friction mediates scission of tubular membranes scaffolded by BAR proteins,” Cell, vol. 170, no. 1, pp. 172–184, 2017.

C. Prevost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A. Callan-Jones, P. Bassereau, "IRSp53 senses negative membrane curvature and phase separates along membrane tubules," Nature Communications, vol. 6, pp. 8529, 2015.

M. Simunovic, E. Evergren, I. Golushko, C. Prévost, H.-F. Renard, L. Johannes, H. T. McMahon, V. Lorman, G. A. Voth, and P. Bassereau, “How curvature- generating proteins build scaffolds on membrane nanotubes,” Proceedings of the National Academy of Sciences, vol. 113, no. 40, pp. 11226–11231, 2016.

H.-F. Renard, M. Simunovic, J. Lemiére, E. Boucrot, M. D. Garcia-Castillo, S. Arumugam, V. Chambon, C. Lamaze, C. Wunder, A. K. Kenworthy, et al., “Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis,” Nature, vol. 517, no. 7535, p. 493, 2015.

More information available here.

Ana-Nicoleta Bondar

Affiliation:

Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Berlin, Germany

Scientific interests:

Dr. Bondar seeks to unravel the role of protonation dynamics and lipid membrane environment in membrane protein structure and function. Her group uses theoretical biophysics based methods to understand these mechanisms.

Publication highlights:

C. del Val and A.-N. Bondar, “Charged groups at binding interfaces of the PsbO subunit of photosystem II: a combined bioinformatics and simulation study,” Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol. 1858, no. 6, pp. 432– 441, 2017.

E. Nango, A. Royant, M. Kubo, T. Nakane, C. Wickstrand, T. Kimura, T. Tanaka, K. Tono, C. Song, R. Tanaka, et al., “A three-dimensional movie of structural changes in bacteriorhodopsin,” Science, vol. 354, no. 6319, pp. 1552– 1557, 2016.

S. Milenkovic and A.-N. Bondar, “Mechanism of conformational coupling in SecA: key role of hydrogen-bonding networks and water interactions,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1858, no. 2, pp. 374–385, 2016.

S. Capponi, M. Heyden, A.-N. Bondar, D. J. Tobias, and S. H. White, “Anoma- lous behavior of water inside the SecY translocon,” Proceedings of the National Academy of Sciences, vol. 112, no. 29, pp. 9016–9021, 2015.

More information available here.

Rainer Böckmann

Affiliation:

Computational Biology, Friedrich-Alexander University Erlangen-Nürnberg, Germany

Scientific interests:

Rainer Böckmann focuses on the structure, dynamics, and function of biological membrane mimics, including e.g. lipid-protein interactions, membrane (nano-)domain formation, and (membrane) protein oligomerization studied both in atomistic and coarse-grained molecular dynamics simulations.

Publication highlights:

A. Sandoval-Perez, K. Pluhackova, R. A. Böckmann, "A Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface,"  J. Chem. Theory Comput., vol. 13, pp. 2310-2321, 2017. 

K. Pluhackova, S. Gahbauer, F. Kranz, T.A. Wassenaar, and R. A. Böckmann, "Dynamic Cholesterol-conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4", PLoS Comp. Biol., vol. 12, pp. e1005169, 2016.

A. Benedix, C. M. Becker, B. L. de Groot, A. Caflisch, R. A. Böckmann, "Predicting Free Energy Changes Using Structural Ensembles", Nature Methods, vol. 6, pp. 3-4, 2009.

R. A. Böckmann, B. L. de Groot, S. Kakorin, E. Neumann, H. Grubmüller, "Kinetics, Statistics, and Energetics of Lipid Membrane Electroporation Studied by Molecular Dynamics Simulations", Biophys. J., vol. 95, pp. 1837-1850, 2008.

More information available here.

Frank Brown

Affiliation:

Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106, USA

Scientific interests:

Frank Brown studies the dynamics and structure of biological membranes through theoretical and computational investigations, with an emphasis on the interpretation of both experiments and detailed simulations.

Publication highlights:

B. A. Camley, M. G. Lerner, R. W. Pastor, and F. L. Brown, “Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes,” The Journal of Chemical Physics, vol. 143, no. 24, p. 12B604 1, 2015.

I. Barel, N. O. Reich, and F. L. Brown, “Extracting enzyme processivity from kinetic assays,” The Journal of Chemical Physics, vol. 143, no. 22, p. 12B627 1, 2015.

R. M. Venable, F. L. Brown, and R. W. Pastor, “Mechanical properties of lipid bilayers from molecular dynamics simulation,” Chemistry and Physics of Lipids, vol. 192, pp. 60–74, 2015.

G. Bel and F. L. Brown, “Theory of single molecule emission spectroscopy,” The Journal of Chemical Physics, vol. 142, no. 17, p. 174104, 2015.

More information available here.

Britta Brügger

Affiliation:

University of Heidelberg, Biochemistry Center (BZH), Heidelberg, Germany

Scientific interests:

Britta Brügger explores the structural determinants and functional consequences of the specific interactions of membrane proteins with several lipid types. Her team uses chemical biology, biochemistry, cell biology and mass spectrometry to identify and understand these lipid—protein interactions.

Publication highlights:

S. Kleinecke, S. Richert, L. de Hoz, B. Brügger, T. Kungl, E. Asadollahi, S. Quintes, J. Blanz, R. McGonigal, K. Naseri, et al., “Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy,” eLife, vol. 6, 2017.

N. Callens, B. Brügger, P. Bonnafous, H. Drobecq ,M. J. Gerl, T. Krey, G. Roman- Sosa, T. Rumenapf, O. Lambert, J. Dubuisson, et al., “Morphology and molecular composition of purified bovine viral diarrhea virus envelope,” PLoS Pathogens, vol. 12, no. 3, p. e1005476, 2016.

M. Hacke, P. Björkholm, A. Hellwig, P. Himmels, C. R. De Almodóvar, B. Brügger, F. Wieland, and A. M. Ernst, “Inhibition of Ebola virus glycoprotein- mediated cytotoxicity by targeting its transmembrane domain and cholesterol,” Nature Communications, vol. 6, p. 7688, 2015.

P. Luján, G. Varsano, T. Rubio, M. L. Hennrich, T. Sachsenheimer, M. Gálvez- Santisteban, F. Martín-Belmonte, A.-C. Gavin, B. Brügger, and M. Kóhn, “PRL- 3 disrupts epithelial architecture by altering the post-mitotic midbody position,”The Journal of Cell Science, vol. 129, no. 21, pp. 4130–4142, 2016.

More information available here.

Yifan Cheng

Affiliation:

Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States

Scientific interests:

Dr. Cheng is studying integral membrane proteins, such as ABC transporters, and large dynamic macromolecular machineries, such as 26S proteasome, using electron cryo-microscopy (cryo-EM) as his main research method.

Publication highlights:

R. Y.-R. Wang, Y. Song, B. A. Barad, Y. Cheng, J. S. Fraser, and F. DiMaio, “Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta,” eLife, vol. 5, 2016.

Y. Gao, E. Cao, D. Julius, and Y. Cheng, “TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action,” Nature, vol. 534, no. 7607, p. 347, 2016.

J. Frauenfeld, R. Löving, J.-P. Armache, A. F. Sonnen, F. Guettou, P. Moberg, L. Zhu, C. Jegerscho, A. Flayhan, J. A. Briggs, et al., “A saposin-lipoprotein nanoparticle system for membrane proteins,” Nature Methods, vol. 13, no. 4, p. 345, 2016.

M. Goedert and Y. Cheng, “Parkinson’s disease: Crystals of a toxic core,” Nature, vol. 525, no. 7570, p. 458, 2015.

More information available here.

Ünal Coskun

Affiliation:

Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Technische Universität Dresden, Fetscher Strasse 74, 01307 Dresden, Germany

Scientific interests:

Dr. Coskun´s research sheds light into the reasons behind the vast complexity of biological lipids and studies the implications of specific protein—lipid interactions on protein regulation. His group tackles these questions with an interdisciplinary approach, combining cell biology, synthetic biology, protein biochemistry, structure biology, and biophysics.

Publication highlights:

T. Gutmann, K.H. Kim, M. Grzybek, T. Walz, Ü. Coskun, "Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor,"  Journal of Cell Biology, DOI: 10.1083/jcb.201711047 2018

J. P. Steringer, S. Lange, S. Cujová, R. Sachl, C. Poojari, F. Lolicato, O. Beutel, H.-M. Müller, S. Unger, Ü. Coskun, et al., “Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components,” eLife, vol. 6, pp. e28985, 2017.

E. Bilkova, R. Pleskot, S. Rissanen, S. Sun, A. Czogalla, L. Cwiklik, T. Róg, I. Vattulainen, P. S. Cremer, P. Jungwirth, et al., “Calcium Directly Regulates Phosphatidylinositol 4, 5-Bisphosphate Headgroup Conformation and Recognition,” Journal of the American Chemical Society, vol. 139, no. 11, 2017.

K. Kaszuba, M. Grzybek, A. Orłowski, R. Danne, T. Róg, K. Simons, Ü. Coskun, I. Vattulainen, "N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes," Proc. Natl. Acad. Sci. U.S.A. vol. 112,  pp. 4334–4339,  2015.

More information available here.

Ron Dror

Affiliation:

Department of Computer Science, Stanford University, CA 94305, USA.

Scientific interests:

Ron Dror employs primarily computational methods, such as simulations, computer vision, machine learning, and drug discovery, to reveal the dynamics and mechanisms of multiple proteins, such as G protein-coupled receptors.

Publication highlights:

S. Wang, D. Wacker, A. Levit, T. Che, R. M. Betz, J. D. McCorvy, A. Venkatakr- ishnan, X.-P. Huang, R. O. Dror, B. K. Shoichet, et al., “D4 dopamine receptor high-resolution structures enable the discovery of selective agonists,” Science, vol. 358, no. 6361, pp. 381–386, 2017.

X. Liu, S. Ahn, A. W. Kahsai, K.-C. Meng, N. R. Latorraca, B. Pani, A. Venkatakrishnan, A. Masoudi, W. I. Weis, R. O. Dror, et al., “Mechanism of intracellular allosteric β 2 AR antagonist revealed by X-ray crystal structure,” Nature, vol. 548, no. 7668, p. 480, 2017.

X. E. Zhou, Y. He, P. W. de Waal, X. Gao, Y. Kang, N. Van Eps, Y. Yin, K. Pal, D. Goswami, T. A. White, et al., “Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors,” Cell, vol. 170, no. 3, pp. 457–469, 2017.

K. E. Komolov, Y. Du, N. M. Duc, R. M. Betz, J. P. Rodrigues, R. D. Leib, D. Patra, G. Skiniotis, C. M. Adams, R. O. Dror, et al., “Structural and functional analysis of a β2-adrenergic receptor complex with GRK5,” Cell, vol. 169, no. 3, pp. 407–421, 2017.

More information available here.

Christian Eggeling

Affiliation:

Institute of Applied Optics, Friedrich‐Schiller‐University Jena & Leibniz Institute of Photonic Technology, Jena, Germany

MRC Human Immunology UnitWeatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom

Scientific interests:

Christian Eggeling focuses on the application and development of ultra-sensitive, live-cell fluorescence microscopy techniques able to visualize structures and dynamics at the molecular level, such as cellular protein—lipid interactions.

Publication highlights:

E. Sezgin, F. Schneider, V. Zilles, I. Urbancic, E. Garcia, D. Waithe, A. S. Klymchenko, and C. Eggeling, “Polarity-Sensitive Probes for Superresolution Stimulated Emission Depletion Microscopy,” Biophysical Journal, vol. 113, no. 6, pp. 1321–1330, 2017.

H. Colin-York, C. Eggeling, and M. Fritzsche, “Dissection of mechanical force in living cells by super-resolved traction force microscopy,” Nature Protocols, vol. 12, no. 4, p. 783, 2017.

E. Sezgin, I. Levental, S. Mayor, and C. Eggeling, “The mystery of membrane organization: composition, regulation and roles of lipid rafts,” Nature Reviews Molecular Cell Biology, vol. 18, no. 6, p. 361, 2017.

M. Fritzsche, D. Li, H. Colin-York, V. Chang, E. Moeendarbary, J. Felce, E. Sezgin, G. Charras, E. Betzig, and C. Eggeling, “Self-organizing actin patterns shape membrane architecture but not cell mechanics,” Nature Communications, vol. 8, p. 14347, 2017.

More information available here.

Aljaz Godec

Affiliation:

Mathematical Biophysics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

Scientific interests:

Aljaz Godec currently focuses on the non-equilibrium statistical mechanics of single molecules, aiming at a trajectory-based description of macromolecular conformation dynamics, spatial transport, binding, and reactions. His methods include mathematical physics and the theory of stochastic processes.

Publication highlights:

A. Godec and R. Metzler, “First passage time statistics for two-channel diffusion,” Journal of Physics A: Mathematical and Theoretical, vol. 50, no. 8, p. 084001, 2017.

A. Godec and R. Metzler, “Universal proximity effect in target search kinetics in the few-encounter limit,” Physical Review X, vol. 6, no. 4, p. 041037, 2016.

A. Godec, J. C. Smith and F. Merzel, "Soft collective fluctuations governing hydrophobic association," Phys. Rev. Lett. vol. 111, p. 127801, 2013.

A. Godec and R. Metzler, "Finite-Time Effects and Ultraweak Ergodicity Breaking in Superdiffusive Dynamics," Phys. Rev. Lett. vol. 110, p. 020603, 2013.

More information available here.

Peter Horvath

Affiliation:

Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland

Scientific interests:

Peter Horvath seeks to solve computational cell biology problems related to light microscopy. His three main research fields are: biological image segmentation and tracking in both 2D and 3D; development of microscopic image correction techniques; machine learning methods for high-throughput microscopy.

Publication highlights:

P. Horvath, N. Aulner, M. Bickle, A. M. Davies, E. Del Nery, D. Ebner, M. C. Montoya, P. Ostling, V. Pietiäinen, L. S. Price, et al., “Screening out irrelevant cell-based models of disease,” Nature Reviews Drug Discovery, vol. 15, no. 11, p. 751, 2016.

F. Piccinini, A. Kiss, and P. Horvath, “CellTracker (not only) for dummies,” Bioinformatics, vol. 32, no. 6, pp. 955–957, 2015.

R. Ungricht, M. Klann, P. Horvath, and U. Kutay, “Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane,” The Journal of Cell Biology, vol. 209, no. 5, pp. 687–704, 2015.

K. Smith, Y. Li, F. Piccinini, G. Csucs, C. Balazs, A. Bevilacqua, and P. Horvath, “CIDRE: an illumination-correction method for optical microscopy,” Nature Methods, vol. 12, no. 5, p. 404, 2015.

More information available here.

Chia-Lung Hsieh

Affiliation:

Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan

Scientific interests:

Dr. Hsieh studies nanoscale physics of biological systems, such as single molecule diffusion, by using novel optical techniques, such as Coherent Brightfield (COBRI) microscopy and ultrahigh-speed interferometric scattering (iSCAT) microscopy.

Publication highlights:

C.-Y. Cheng and C.-L. Hsieh, “Background Estimation and Correction for High- Precision Localization Microscopy,” ACS Photonics, vol. 4, no. 7, pp. 1730–1739, 2017.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells,” ACS Nano, vol. 11, no. 3, pp. 2575–2585, 2017.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, and C.-L. Hsieh, “Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated intracellular cargo transport by coherent brightfield microscopy,” Nanoscale, vol. 9, no. 19, pp. 6567– 6574, 2017.

J. M. Lee, J. A. Kim, T.-C. Yen, I. H. Lee, B. Ahn, Y. Lee, C.-L. Hsieh, H. M. Kim, and Y. Jung, “A Rhizavidin Monomer with Nearly Multimeric Avidin-Like Binding Stability Against Biotin Conjugates,” Angewandte Chemie International Edition, vol. 55, no. 10, pp. 3393–3397, 2016.

More information available here.

Elina Ikonen

Affiliation:

Department of Anatomy, Faculty of Medicine, Minerva Research Institute for Medical Research, University of Helsinki, Helsinki, Finland.

Scientific interests:

Dr. Ikonen’s main interest is cholesterol and related lipids, focusing on their distribution and trafficking in cells. Her group uses and develops novel assays to quantitatively analyze lipid trafficking in various human lipid storage diseases.

Publication highlights:

K. G. Chernov, M. Neuvonen, I. Brock, E. Ikonen, and V. V. Verkhusha, "Introducing inducible fluorescent split cholesterol oxidase to mammalian cells," Journal of Biological Chemistry, vol. 292, pp. 8811-8822, 2017.

S. G. Pfisterer, G. Gateva, P. Horvath, J. Pirhonen, V. T. Salo, L. Karhinen, M. Varjosalo, S. J. Ryhänen, P. Lappalainen, and  E. Ikonen, "Role for formin-like 1-dependent acto-myosin assembly in lipid droplet dynamics and lipid storage," Nature Communications, vol. 8, pp. 14858, 2017.

A. A. García, S. G. Pfisterer, H. Riezman, E. Ikonen, and E. O. Potma, "D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage," Journal of Biomedical Optics, vol. 21, pp. 061003, 2015.

T.Blom, S. Li, A. Dichlberger, N. Bäck, Y. A. Kim, U. Loizides-Mangold, H. Riez- man, R. Bittman, and E. Ikonen, “LAPTM4B facilitates late endosomal ceramide export to control cell death pathways,” Nature Chemical Biology, vol. 11, no. 10, p. 799, 2015.

 

More information available here.

Gerald Kneller

Affiliation:

Centre de Biophysics. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans, France

Scientific interests:

Gerald Kneller focuses on the study of slow protein dynamics and diffusion processes in membranes. His research methods include computer simulations, in particular simulation-based analyses of neutron scattering experiments, and theoretical studies of diffusion and relaxation processes in complex molecular systems.

Publication highlights:

G. R. Kneller, "Asymptotic neutron scattering laws for anomalously diffusing quantum particles," Journal of Chemical Physics, vol. 145, pp. 044103, 2016, Editor’s choice.

K. Hinsen and G. R. Kneller, “Communication: A multiscale Bayesian inference approach to analyzing subdiffusion in particle trajectories,” Journal of Chemical Physics, vol. 145, no. 15, 2016.

S. Stachura and G. R. Kneller, "Probing anomalous diffusion in frequency space," Journal of Chemical Physics, vol. 43, pp. 191103, 2015.

G. R. Kneller, K. Baczynski, and M. Pasenkiewicz-Gierula, "Consistent picture of lateral subdiffusion in lipid bilayers: molecular dynamics simulation and exact results," Journal of Chemical Physics, vol. 135, pp. 141105, 2011.

 

More information available here.

Pekka Lappalainen

Affiliation:

Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland

Scientific interests:

Prof. Pekka Lappalainen's main research interests are to uncover the mechanisms by which actin and plasma membrane dynamics are regulated in cells.

Publication highlights:

Hakala M, Kalimeri M, Enkavi G, Vattulainen I, Lappalainen P, "Molecular mechanism for inhibition of twinfilin by phosphoinositides," The Journal of Biological Chemistry,  (in press), 2018.

Senju Y, Kalimeri M, Koskela EV, Somerharju P, Zhao H, Vattulainen I, Lappalainen P, "Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides," Proc. Natl. Acad. Sci.,  vol. 114,  pp. E8977-E8986, 2017.

Gateva G, Kremneva E, Reindl T, Kotila T, Kogan K, Gressin L, Gunning PW, Manstein DJ, Michelot A, Lappalainen P,  "Tropomyosin isoforms specify functionally distinct actin filament populations in vitro," Current Biology vol. 27, pp. 705–713, 2017.

JI. Lehtimäki, AM. Fenix, T. Kotila, G. Balistreri, L. Paavolainen, M. Varjosalo, BT. Burnette,  P. Lappalainen, “UNC-45a promotes myosin folding and stress fiber assembly,” The Journal of Cellular Biology, vol. 216, pp. 4053, 2017.

 

More information available here.

 

Ilya Levental

Affiliation:

Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA

Scientific interests:

The structure of eukaryotic membranes, post-translational mechanisms for targeting membrane microdomains, and functional diversity in protein transmembrane domains.

Publication highlights:

 

KR. Levental, MA. Surm, AD. Skinkle, JH. Lorent, Y. Zhou, C. Klose, JT. Chang, JF. Hancock, I. Levental, "ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis," Science Advances, vol. 8, no. 11, pp. eaao1193.

M.  I. Levental, SL. Veatch, “Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line,” Biophysical Journal, vol. 113, no. 6, pp. 1212-1222, 2017.

CE. Cornell, NLC. McCarthy, KR. Levental, I. Levental, NJ. Brooks, SL. Keller, “n-Alcohol Length Governs Shift in Lo-Ld Mixing Temperatures in Synthetic and Cell-Derived Membranes,” Biophysical Journal, vol. 113, no. 6, pp. 1200-1211, 2017.

JH. Lorent, BB. Diaz-Rohrer, X. Lin, K, Spring, AA. Gorfe, KR. Levental, I. Levental, “Structural determinants and functional consequences of protein affinity for membrane rafts,” Nature Communications, in press, 2017.

K. Tulodziecka, BB. Diaz-Rohrer, MM. Farley, RB. Levental, MN. Waxham, I. Levental, “Remodeling of the postsynaptic plasma membrane during neural development,” Molecular Biology of the Cell, vol. 27, no. 22, pp. 3480-3489, 2016.

More information available here.

Siewert-Jan Marrink

Affiliation:

Groningen Biomolecular Sciences and Biotechnology Institute &Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Scientific interests:

Prof. Marrink's research is aimed at an understanding of (bio)molecular processes, using multiscale molecular dynamics simulations.

Publication highlights:

J. Nedergaard Pedersen, P. Wilhelmus Johannes Maria Frederix, J. Skov Pedersen, S.J. Marrink, & D. Otzen, “Role of charge and hydrophobicity in liprotide formation: A molecular dynamics study with experimental constraints,” ChemBioChem, vol. 19, no. 3, pp. 263-271, 2017.

F.J. Van Eerden, M. N. Melo, P.W.J.M Frederix, X. Periole, & S.J. Marrink, “Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex,” Nature Communications, vol. 8, pp. 15214, 2017.

H. I. Ingólfsson, C. Arnarez, X. Periole, & S. J. Marrink, “Computational 'microscopy' of cellular membranes,” The Journal of Cell Science, vol. 129, pp. 257-268, 2016.

A. Guskov, S. Jensen, I. Faustino, S. J. Marrink, & D. J. Slotboom, “Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk,” Nature Communications, vol. 7, pp. 13420, 2016.

More information available here.

Hector Martinez-Seara Monne

Affiliation:

Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic

Laboratory of Physics, Tampere University of Technology, Tampere, Finland

Scientific interests:

The most relevant topics dr Martinez-Seara is working on are: Glycocalyx structure and functionality with special focus on their charged components, membrane structure and membrane dynamics, and interaction of gold nanoparticles with membranes.

Publication highlights:

M. Javanainen, H. Martinez-Seara Monne, I. Vattulainen, “Excessive aggregation of membrane proteins in the Martini model,” PLoS ONE, vol. 12, no. 11, p. e0187936, 2017.

J. Vuorio, I. Vattulainen, H. Martinez-Seara Monne, “Atomistic fingerprint of hyaluronan–CD44 binding,” PLoS Computational Biology, vol. 13, no. 7, p. e1005663, 2017.

R. Guixà-González, J. Albasanz, I. Rodriguez-Espigares, M. Pastor, F. Sanz, M. Marti, M. Manna, H. Martinez-Seara Monne, P. Hildebrand, M. Martín, J. Selent, “Membrane cholesterol access into a G-protein- coupled receptor,” Nature Communications, vol. 8, pp. 14505, 2017.

E. Heikkilä, H. Martinez-Seara Monne, A. Gurtovenko, M. Javanainen, H. Häkkinen, I. Vattulainen, J. Akola, “Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations,” The Journal of Physical Chemistry C, vol. 118, pp. 11131, 2014.

More information available here.

Ralf Metzler

Affiliation:

Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam—Golm, Germany

Scientific interests:

The theory and applications of normal and anomalous stochastic processes, gene regulation, crowding in biological cells, and (bio)polymer physics. Effects of disorder, annealed or quenched, interacting particles, ergodicity and its violation, as well as ageing are studied.

Publication highlights:

D. Krapf, E. Marinari, R. Metzler, G. Oshanin, X. Xu, and A. Squarcini, “Power spectral density of a single Brownian trajectory: what one can and cannot learn from it,” New Journal of Physics, vol. 20, pp. 023029, 2018.

J. Slezak, R. Metzler, and M. Magdziarz, “Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion,” New Journal of Physics, vol. 20, pp. 023026, 2018.

AV. Chechkin, F. Seno, R. Metzler, and IM. Sokolov, "Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities," Physical Review X, vol. 7, pp. 021002, 2017.

A. Godec and R. Metzler, "Universal proximity effect in target search kinetics in the few-encounter limit," Physical Review X,  vol. 6, pp. 041037, 2016.

More information available here.

Walter Nickel

Affiliation:

Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany

Scientific interests:

Current research goals in the Prof. Nickel's lab relate to the spatio-temporal coordination of FGF2 secretion in living cells, the analysis of the molecular mechanism by which FGF2 physically traverses the plasma membrane and the relevance of this process for other unconventional secretory proteins such as HIV Tat.

Publication highlights:

G. La Venuta, S. Wegehingel, P. Sehr, HM. Müller, E. Dimou, J.P. Steringer, M. Grotwinkel, N. Hentze, M.P. Mayer, D.W. Will, U. Uhrig, J.D Lewis, W. Nickel, “Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2,” The Journal of Biological Chemistry, vol. 291, pp. 17787-803, 2016.

M. Zeitler, J.P. Steringer, H.M. Müller, M.P. Mayer, W. Nickel, “HIV-Tat Forms Phosphoinositide Dependent Membrane Pores Implicated in Unconventional Protein Secretion,” The Journal of Biological Chemistry, vol. 290, pp. 21976-84, 2015.

H.M. Müller, J.P Steringer, S. Wegehingel, S. Bleicken, M. Münster, E. Dimou, S. Unger, G. Weidmann, H. Andreas, A.J. García-Sáez, K. Wild, I. Sinning, W. Nickel, “Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces,” The Journal of Biological Chemistry, vol. 290, pp. 8925-8937, 2015.

J.P. Steringer, S. Lange, S. Čujová, R. Šachl, C. Poojari, F. Lolicato, O. Beutel, H.M. Müller, S. Unger, Ü. Coskun, A. Honigmann, I. Vattulainen, M. Hof, C. Freund, W. Nickel, "Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components," eLife e28985, 2017.

More information available here.

Richard Pastor

Affiliation:

Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health , Bethesda, Maryland 20824, United States

Scientific interests:

Dr. Pastor applies information collected from computer simulations and statistical mechanics to biophysics, with an emphasis on cell membranes. He is combining experiments on simplified membranes with the fundamental principles and simulation techniques of physics to understand and model cell membranes on the atomic level.

Publication highlights:

A. H. Beaven, A. M. Maer, A. J. Sodt, H. Rui, R. W. Pastor, O. S. Andersen and W. Im, “Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation,” Biophysical Journal, vol. 112, no. 6, pp. 1185-1197, 2017.

A. J. Sodt, A. H. Beaven, O. S. Andersen, W. Im and R. W. Pastor, Lipid Redistribution II: A 3D Continuum Elastic Model,” Biophysical Journal, vol. 112, no. 6, pp. 1198-1213, 2017.

S. M. Gordon, M. Pourmousa, M. Sampson, D. Sviridov, R. Islam, B. S. Perrin, G. Kemeh, R. W. Pastor and A. T. Remaley, “Identification of a novel lipid binding motif in apolipoprotein B by the analysis of hydrophobic cluster domains,” Biochimica et Biophysica Acta (BBA)-Biomembranes vol. 1859, no. 2, pp. 135-145, 2017.

R. M. Venable, H. I. Ingólfsson, M. G. Lerner, B. S. Perrin, B. A. Camley, S. J. Marrink, F. L. H. Brown and R. W. Pastor, “Lipid and Peptide Diffusion in Bilayers: The Saffman-Delbrück Model and Periodic Boundary Conditions,” The Journal of Physical Chemistry B, vol. 121, no. 15, pp. 3443-3457, 2017.

 

More information available here.

 

Madan Rao

Affiliation:

Raman Research Institute, Bangalore 560080, India

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore 560065, India

Scientific interests:

Specifically we have been working on: the active organization and dynamics of molecules at the cell surface, the shape dynamics in membranes coupled to the active cytoskeleton, the golgi and mitochondrial morphogenesis and remodeling, chromatin organization and active mechanics in the nucleus, tissue dynamics, developmental patterning, collective cell migration, and many more.

Publication highlights:

K. Gowrishankar and M. Rao, “Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid" Soft Matter  vol. 12, pp. 2040, 2016.

A. Maitra, P. Srivastava, M. Rao and S. Ramaswamy, “Activating membranes,” Physical Review Letters, vol. 112, pp. 258101, 2014.

G. Iyengar and M. Rao, “A Cellular Solution to an Information Processing Problem,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 12402-12407, 2014.

M. Rao and S. Mayor, “Active organization of membrane constituents in living cells, Current. Opinion,” The Journal of Cell Biology, vol. 29, pp. 126-132, 2014.

More information available here.

Andela Saric

Affiliation:

Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK

Scientific interests:

Andela’s research focuses on understanding the pathways of functional and pathological protein assembly, and the role of lipid membranes in mediating these. Her methods of choice include coarse-grained computer simulations and statistical physics, in and out of thermodynamic equilibrium.

Publication highlights:

T Curk, P Wirnsberger, J Dobnikar, D Frenkel, A. Šarić, "Controlling cargo trafficking in multicomponent membranes", arXiv:1712.10147, 2017.

A. Šarić, A. K. Buell, G. Meisl, T. C T. Michaels, C. M. Dobson, S. Linse, T. P. J., Knowles, D. Frenkel, "Physical determinants of the self-replication of protein fibrils", Nature Physics 12, 874-880, 2016.

A. Šarić, Y. C. Chebaro, T. P. J. Knowles, D. Frenkel, "Crucial role of nonspecific interactions in amyloid nucleation", PNAS 111, 17869-17874, 2014.

A. Šarić, A. Cacciuto, "Mechanism of membrane tube formation induced by adhesive nanocomponents", Physical Review Letters 109, 188101, 2012.

 

More information available here.

Tetiana Serdiuk

Affiliation:

Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland

Scientific interests:

The Biophysics Laboratory develops and applies bionanotechnological tools to image, quantitate and control biological processes. Particularly we want to explore how membrane proteins work individually, how they work collectively, how this collectivity is guided by the cell and how membrane proteins comprehensively contribute to cellular processes.

Publication highlights:

T. Serdiuk,  D.J. Müller, “Pull-and-Paste of Single Transmembrane Proteins,” Nano Letters vol. 17, no. 7, pp. 4478–4488, 2017.

T. Serdiuk, D. Balasubramaniam, J. Sugihara, S.A. Marin, H.R. Kaback & D.J. Müller, “YidC assists the stepwise and stochastic folding of membrane proteins,” Nature Chemical Biology, vol. 12, pp. 911–917, 2016.

Serdiuk, J. Sugihara, S.A Marim, H.R. Kaback, D.J. Müller, “Observing a Lipid-Dependent Alteration in Single Lactose Permeases,” Structure, vol. 23, pp. 754–761, 2015.

T. Serdiuk, M.G. Madej, J. Sugihara, S. Kawamura, S.A. Marin, H.R. Kaback and D.J. Müller, “Substrate-induced changes in the structural properties of LacY,” PNAS, vol. 111, no. 16, pp. E1571-E1580, 2014.

More information available here.

Kai Simons

Affiliation:

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

Lipotype GmbH, Dresden, Germany

Scientific interests:

His recent research has focused on cell membrane organization and function. He has pioneered the concept of lipid rafts as a membrane organizing principle, based on the phase-separating capabilities of sphingolipids and cholesterol in cell membranes. 

Publication highlights:

K. Simons, “ How can omic science be improved,” Proteomics, Feb 8, 2018.

K. Simons, “Coming to grips with cell surface polarity,” Nature Reviews Molecular Cell Biology, vol. 18, no. 5, pp. 278, 2017.

K. Simons, Ü. Coskun, “Membrane Lipid Galore,” Journal of Molecular Biology, vol. 428, no. 24 Pt A, pp. 4737, 2016.

K. Simons, “Cell membranes: A subjective perspective,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1858, no. 10, pp. 2569-2572, 2016.

More information available here.

Ana-Suncana Smith

Affiliation:

PULS Group within the Institute for Theoretical Physics and the Engineering of Advanced Materials Excellence Cluster at FAU Erlangen-Nürnberg, 91054 Erlangen, Germany

Ruđer Bošković Institute, 10000 Zagreb, Croatia

Scientific interests:

The research of Ana-Suncana Smith focuses on transport and reactivity in complex environments, with a focus on bio-membranes and solid-liquid interfaces. Her group uses a variety of theoretical techniques in combination with experiments on model systems to elucidate the fundamental physical framework underlying biological functions of cells and tissues.

Publication highlights:

S. Fenz, T. Bihr, D. Schmidt, R. Merkel, U. Seifert, K. Sengupta, A.-S. Smith, "Membrane fluctuations mediate lateral interactions between cadherin bonds," Nature Physics, vol.13, pp. 906-913, 2017

T. Bartossek, NG. Jones, C. Schäfer, M. Cvitković, M. Glogger, HR. Mott, J. Kuper, M. Brennich, M. Carrington, A.-S. Smith, S. Fenz, C. Kisker, M. Engstler, "Structural basis for the shielding function of the dynamic trypanosome VSG coat," Nature Microbiology,  vol. 2, pp. 1523, 2017.

T. Bihr, U. Seifert, A.-S. Smith, “Multiscale approaches to protein-mediated interactions between membranes - Relating microscopic and macroscopic dynamics in radially growing adhesions,” New Journal of Physics, vol. 18, pp. 083016, 2015.

C. Monzel, D. Schmidt, C. Kleusch, D. Kirchenbüchler, U. Seifert, A.-S. Smith, K. Sengupta, R. Merkel, "Measuring Fast Stochastic Displacements of Bio-Membranes with Dynamic Optical Displacement Spectroscopy," Nature Communications vol. 6,  pp. 8162, 2015.

 

More information available here.

 

Thomas Walz

Affiliation:

The Rockefeller University, New York, NY, USA

Scientific interests:

Dr. Walz is interested in processes that involve biological membranes, ranging from vesicular transport that distributes cargo molecules throughout the cell to how lipids affect the structure and function of membrane proteins.

Publication highlights:

W. Mi et al., “Structural basis of MsbA-mediated lipopolysaccharide transport,” Nature, vol. 549, pp. 233-237, 2017.

H.T. Chou et al., "CATCHR, HOPS and CORVET tethering complexes share a similar architecture,” Nature Structural & Molecular Biology, vol. 23, pp. 761-763, 2016.

Y. Cheng et al., “A primer to single-particle cryo-electron microscopy,” Cell, vol. 161, pp. 438-449, 2015.

R.K. Hite et al., “Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals,” The EMBO Journal, vol. 29, pp. 1652–1658, 2010.

 

More information available here.