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Abstract

The investigation of microbial communities is an essential part of the study of the biosphere.
Flexible molecular fingerprinting tools such as terminal-restriction fragment length polymorphism
(T-RFLP) analysis are often applied in the studies to enable the characterization of the microbial
population. However, such data have so far been primarily analyzed using conventional clustering
methods. Here we introduce a Bayesian model-based method for the purpose of comparing
microbial communities using T-RFLP data. Such datasets have in general several challenging
features, e.g. sparseness, missing values and structurally zero-valued observations. These features
are taken into account by developing a Bayesian latent class mixture model for the observations in
our framework. To make inferences under the model we use a recent Markov chain Monte Carlo
(MCMC) -based method for the Bayesian model selection. To assess the introduced method we
analyze both simulated and real datasets. The simulations show that our approach compares
preferably to standard statistical clustering tools, such as k-means, hierarchical clustering, and
Autoclass. The developed tool is freely available as a software package T-BAPS at
http://www.abo.fi/fak/mnf/mate/jc/software/t-baps.html.
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1 Introduction

Microbial communities can be found in various environments including those
that exist in marine sediment, soil and human bodies. It is recognized that
microbial communities respond to many factors that affect the underlying
ecosystems. The study of microbial communities may thus improve our un-
derstanding of their role in ecological functions and human health. For exam-
ple, analyzes of microbial composition in marine sediments help to discover
the transfer of nutrients and energy within the whole marine environment
(Urakawa et al., 2005). In medical research, comparison of temporal changes
of microbiota in human organs will enable development of novel pharmaceu-
ticals (Wang et al., 2004). In agriculture, the impact of transgenic crops on
natural ecosystems can be assessed by examining structural changes in soil
bacterial communities (Park et al., 2006).

Microbial communities are composed of multiple bacterial species and of-
ten exhibit complex structure. Traditional techniques used for microbial char-
acterization include bacterial isolation and cultivation. These culture-based
techniques, despite of their significant contribution to our current knowledge
of microbes as a whole, provide very limited information for the assessment of
microbial diversity. Alternatively, DNA-based techniques, such as 16S rDNA
clone library analysis, can further reveal microbial diversity on a molecular
level. However, this technique is rather time-consuming and labor-intensive
and therefore has limited use for comparative studies involving a large number
of samples (Abdo et al., 2006).

A molecular fingerprinting technique, terminal restriction fragment leng-
th polymorphism (T-RFLP), has become increasingly popular in the studies
of complex microbial communities (Marsh, 1999). As its name suggests, T-
RFLP analysis extracts a certain nucleotide sequence from a PCR amplified
marker, and measures the length polymorphism of terminal restriction frag-
ments (T-RFs) by using a DNA sequencer. The output electropherogram is
a profile that consists of a series of peaks each of which indicates the relative
abundance of a particular T-RF length (Figure 1). The presence or absence
of a fragment length and its relative abundance is assumed to indicate the
richness of a certain bacterial phylotype. Without the necessity of knowing
the actual sequence information, T-RFLP provides a rapid, robust and repro-
ducible method for estimating bacterial diversity and community composition
on the molecular level. Figure 1 presents an electropherogram and a section
of its standardized data from a T-RFLP analysis from two marine sediment
samples.

Further processing of fragment profiles usually generates a data matrix
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Figure 1: T-RFLP profiles and data of two marine sediment samples. The
electropherogram shows the lengths of terminal fragments present, measured
in base pairs. The height of each peak is measured in fluorescent intensities.
The peak patterns are converted to a table of feature vectors where the relative
abundance of each fragment length is calculated.

where rows correspond to samples and columns represent relative intensities
of fragment lengths. Samples with peak patterns dissimilar to each other will
be assigned into different clusters, by which the mechanisms that drive the
diversity can be further investigated. Conventional methods, such as k-means
and hierarchical clustering, have been used to provide simplistic solutions.
However, these methods cannot easily provide uncertainty measures due to
their deterministic nature. Recent approaches used for T-RFLP data clus-
tering include principle component analysis (PCA) and discriminant analysis
(DA) (Wang et al., 2004; Park et al., 2006). By reducing data dimensional-
ity using PCA, the distances in T-RFLP patterns can be visualized. PCA
is known to work well with data sets that are approximately normally dis-
tributed. However, when examining non-normal and heavily skewed T-RFLP
data, PCA tends to obscure underlying patterns that might be important in
differentiating microbial communities (Rees et al., 2004).

Model-based clustering methods have been available for quite some time
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(see Bock, 1996), but they have not yet been in an as wide-spread use as
the standard algorithmic methods available in most statistical software pack-
ages. Nevertheless, the popularization of Bayesian computational algorithms,
known typically as Markov chain Monte Carlo (MCMC) methods, has lead to
an increasing awareness of the potential hidden in the model-based approach.
For recent examples of applications within molecular biology, see Zhou and
Wakefield (2006) and Dai and Lieu (2006). However, these unsupervised clas-
sification approaches are more tailored for the analysis of data from microarray
experiments. In a majority of the existing Bayesian unsupervised classification
methods, the data are either assumed to be inherently discrete or pre-processed
into a discrete format (see, e.g. Corander et al., 2007; Gyllenberg et al., 1997).
Although the discretization enables the use of standard reference choices of
the likelihood and priors in the classification model, for sparse data sets it also
leads to a considerable loss of information, which might be essential in differ-
entiating the microbial communities. On the other hand, standard continuous
unsupervised classifiers based on Gaussian mixture models, do not either re-
flect well the characteristics of T-RFLP data, and are thus likely to fail to
produce sensible clustering results.

Clustering T-RFLP data is demanding primarily for two reasons. Firstly,
the number of variables, e.g. the number of unique fragment lengths, often
exceeds the number of samples. The excessive number of explanatory variables
poses significant challenges in terms of modeling and computation. Secondly,
for each variable, structurally zero-valued observations will always be present.
The zero-inflated feature of T-RFLP data tends to invalidate the assumptions
underlying many Gaussian mixture models. Gaussian mixture models could
therefore lead to biased inference when used in clustering of T-RFLP data.

In this article, we develop a Bayesian method to tackle the above-mentioned
difficulties. The mixed zero and positive values of each variable are explicitly
modeled by a mixture of discrete and continuous distributions. Our classifi-
cation framework is built according to the latent class concept (see, e.g. Duda
et al., 2000), and formulated in the OpenBUGS environment (Thomas et al.,
2006). We consider models for different predefined number of clusters sepa-
rately, and apply the recently introduced BICM criterion for model selection
(Raftery et al., 2006). The optimal cluster number, as well as the cluster-
specific parameters can be jointly inferred from their posterior distributions.
The developed methodology is implemented in a freely downloadable user-
friendly software package (T-BAPS) enabling biologists to investigate their
data sets.

The paper is organized as follows. In Section 2 we introduce notation and
describe the mathematical details of the model and the suggested inference
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procedure. In Section 3, we test the method on simulated data and compare
it with a number of previously suggested approaches. In section 4, we analyze
two real T-RFLP data sets, and some discussion is provided in the final section.

2 Bayesian model-based unsupervised classifi-

cation

2.1 Latent class model for a predefined number of clus-
ters

2.1.1 Modeling framework and likelihood function

We consider N samples and J fragment lengths present in a T-RFLP data
set. Let yij denote, for sample i, the relative abundance of the jth fragment
length. Our model aims at partition of the data into clusters. To simplify the
modeling process, we assume that a permutation of data ordering, in either
sample-wise or variable-wise, does not affect its marginal probability. In our
model, each data point yij is supposed to be independently drawn from an
unknown component k of a finite mixture of K distributions, each of which is
associated with a density fjk having a set of cluster-specific parameters φjk,
such that

p(yij|π, φj) =
K∑

k=1

p(yij|Zi = k, φjk, π)p(Zi = k|π), i = 1, . . . , N, j = 1, . . . , J.

(1)
Here Zi is an unobserved partition label indicating the underlying cluster to
which the ith sample belongs; π = (π1, . . . , πK) is a probability vector, such
that πk ≥ 0 and

∑K
k=1 πk = 1. We assume that the partition labels are inde-

pendent observations from a generalized Bernoulli distribution with parameter
π

p(Zi = k|π) = πk.

It is further assumed that conditional on Z, y1j, . . . , ynj are independently
sampled from the cluster-conditional densities such that

p(yij|Zi = k, φjk, π) = f(yij; φjk).

Therefore (1) is simplified as

p(yij|π, φj) =
K∑

k=1

πkf(yij; φjk), i = 1, . . . , N, j = 1, . . . , J. (2)
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To define the cluster-specific densities in (2), we in particular take into
account the zero-inflated feature of the data. We assume that yij is either a
zero value sampled from a Bernoulli distribution, or a positive value drawn
from a Gaussian distribution. It follows that

p(yij|Zi = k, π, φ) = λkjI(yij = 0) + (1− λkj)fg(yij; µkj, τkj)I(yij 6= 0),

where λkj is the weight of zero-inflatedness at variable j for cluster k; I(·) is
a boolean indicator; µkj and τkj are the mean and precision parameters of the
Gaussian density fg. With the extra layer added to the model hierarchy, the
cluster-specific parameter φ represents (λ, µ, τ).

Assuming exchangeability on both data dimensions, the likelihood function
for parameter (Z, π, φ) given the observed data is then compactly expressed
as

p(y|Z, π, φ) =
N∏

i=1

J∏

j=1

p(yij|Z, π, φ).

2.1.2 Prior settings

We are primarily interested in the number K of clusters and the partition
labels Z supported by the data y. In a hierarchical Bayesian setting, it is
computationally convenient to assume first that K is predefined. The joint
distribution of the remaining parameters and the data can be specified as a
product of conditional distributions

p(Z, π, φ,y) = p(π, φ)p(Z|π, φ)p(y|Z, π, φ).

A Bayesian approach requires specifying the prior distribution p(π, φ). The
marginal probabilities for the partition labels Z can then be inferred from the
posterior distribution p(π, φ|y) using Bayes’ theorem:

p(Zi = k|y) =
∫ πkf(yi; φk)∑K

l=1 πlf(yi; φl)
p(π, φ|y)dπdφ. (3)

Assuming mutual independence, the prior p(π, φ) can be further factorized
as

p(π, φ) = p(π)p(φ) = p(π)p(λ)p(µ)p(τ). (4)

We now consider the specification of priors for each parameter in (4). We
assign a symmetric Dirichlet prior to π as

πk ∼ Dirichlet(α, . . . , α), α > 0, k = 1, ..., K. (5)
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Throughout the paper we are using α = 1. This prior setting indicates a
symmetric assumption of all the clusters being equally probable a priori.

For the Bernoulli-Gaussian component weight λ we define a Beta prior

λkj ∼ Beta(βbin, βgauss). (6)

The choice of βbin and βgauss reflects prior knowledge about the level of zero-
inflatedness of the data. Based on prior experience on similar data, if an
analyst expects that the probability of observing zero value in the data is
larger than 0.5, then he could incorporate this information by letting βbin >
βgauss. For convenience of presentation, hereafter we use a uniform distribution
between 0 and 1 by choosing βbin = βgauss = 1. This setting implies a non-
informative prior on λ.

To allow for a flexible inference while avoiding an over-parametrization of
the model, the prior distributions of the mean µ and precision τ in Gaus-
sian components were carefully considered. In particular, we add additional
hierarchy on µ and τ separately, such that

µkj ∼ Gaussian(akj, bkj), (7)

and
τkj ∼ Gamma(r, s). (8)

If there is no prior information that distinguishes the clusters, the posterior
distribution of p(π, φ) will be similarly symmetric. Consequently, the marginal
classification probabilities given in (3) tend to be identical for every sample,
thus leading to an unidentifiable partition. To avoid the identification problem
related to latent class models, a common response is to impose constraints on
the parameter space, such that the symmetry of the data likelihood can be
broken down (Stephens, 2000). The constrains were here made to the prior
setting of hyperparameters a and b according to the predefined K and the
observed range of the data. We impose the restriction by ordering akj to be
evenly distributed along the range of observations by

akj = min(yj) +
k − 1

K − 1
Rj, (9)

where Rj is the length of the non-zero data interval for variable j. The preci-
sion hyper-parameters bkj are chosen independently as

bkj =
√

K/R2
j , (10)

according to the suggestion of Richardson and Green (1997).
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As the amount of information in a T-RFLP data set is typically limited,
we choose to restrict further the precision parameters τkj to be independent of
clusters and variables. We use a vague Gamma prior by taking r = s = 0.01 in
(8), to express the belief that the τkj are similar and that the prior uncertainty
is high.

2.1.3 Posterior inference

Using Bayes’ theorem, the posterior distribution of model parameters is pro-
portional to the product of the prior probability and the likelihood

p(π, λ, µ, τ |y) ∝ p(y|λ, µ, τ)p(π, λ, µ, τ).

For our model, the exact form of the posterior distribution is in practice in-
tractable, so we will rely on MCMC computation that approximates the pos-
terior by drawing samples from the distribution. We use OpenBUGS (Thomas
et al., 2006) environment to perform the necessary sampling procedure. Using
a Gibbs sampler, OpenBUGS can construct a Markov chain whose stationary
distribution is the posterior distribution of model parameters. In particular,
we are interested in the inference of cluster-specific parameters φ = (λ, µ, τ)
and clustering labels Z. The algorithm that combines the posterior inference
and model selection will be outlined in section 2.3.

2.2 Model selection in a range of number of clusters

In practical analysis of T-RFLP data, the number K of clusters is typically
unknown. Note that our model formulation in section 2.1 requires that K is
predefined. Therefore, we need to explore a range of models in which K is
allowed to vary. The optimal number of clusters will be determined by the
model that best fits to the data. In this section, we describe a model selection
criterion by which the fitness of multiple competitive models can be evaluated.
Furthermore, rather than giving a single best model, we would like to consider
the model uncertainty as well.

In general, a Bayesian approach can provide a formal comparison of model
structures with a varying number of parameters. The key quantity is integrated
likelihood of the data, which is defined in the current context as

p(y|K) =
∫

p(y|π, φ, K)p(π, φ|K)dπdφ.

The integrated likelihood enables the comparison of K’s by taking simultane-
ously into account the complexity and the ability to predict the observed data.
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In the case of two models being under comparison, it is common to use the
Bayes factor, defined as the ratio of integrated likelihoods for the two models.
However, the estimation of the integrated likelihood is an extremely difficult
problem in general. For detailed discussions in this issue, see Spiegelhalter
et al. (2002).

Recently, an efficient novel method for model selection has been developed
by Raftery et al. (2006). They provided a BICM criterion that can be cal-
culated from the posterior distribution through an MCMC simulation. The
BICM can be interpreted as an approximation to the log integrated likelihood
of the data and therefore can be used as a measure of model fitness.

By applying the BICM criterion, we provide a model selection method
for our latent class models. With specification of a range of initial cluster
numbers a priori, a BICM score for each predefined K can be calculated from
the posterior MCMC simulation. The BICM is defined by

logπ̂BICM(y)|K = l̄ − s2
l (log(n)− 1), (11)

where n is the size of the data; l̄ and s2
l are the sample mean and variance

of the log-likelihood log p(y|π, φ). In the OpenBUGS environment, summary
of the log-likelihood is particularly straightforward since it is automatically
calculated in the posterior simulation.

2.3 Sampling algorithm

In the present context, we can examine the partition Z and also the cluster-
specific parameters (λ, µ, τ) by comparing the integrated likelihood of the data
under various values of initial Ks using the BICM approximation. This proce-
dure has been automated in our software package T-BAPS using the following
steps:

1. Predefine the number of clusters K and determine the hyperparameters
(a, b) according to (9) and (10) separately.

2. Generate initial values according to (5), (6), (7) and (8).

3. Generate a posterior sample for all the parameters using the Gibbs sam-
pler algorithm in the OpenBUGS environment.

4. Calculate the BICM for the model with the specified initial K, according
to (11).

5. Repeat the procedure from step 1 to step 4 for a range of Ks and compare
their BICM scores.
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The optimal cluster numbers can be determined by the partition result from
the model with the highest BICM score. Note that for some of initial Ks,
not all the clusters in the model are assigned data points after the MCMC
has reached a stable state, and thus the actual number of non-empty clusters
may be smaller than the initially predefined value of K. However, this has no
practical consequence for the analysis and does not affect the estimation of the
BICM. The above analysis allows for the identification of the optimal clustering
solution, which can be investigated using the graphical tools implemented in
the T-BAPS package.

3 Analysis of Simulated Data

In order to assess our model performance, we first used simulated data to
compare our method with other popular approaches to clustering. The data
was generated by a mixture model corresponding to K = 4 clusters, and
the sample size from each cluster was 25, resulting in a total of N = 100
observations. The number of variables J , corresponding to the number of
fragment sizes in real T-RFLP data, was set equal to 100. The simulated data
set hereby consists of 100 observations and 100 variables.

The data generating process basically involves two steps. Firstly, we gen-
erate a binary data set using Bernoulli distributions. To appropriately mimic
the excessive zero-values in real T-RFLP data sets, we did sample λkj, the
probability of observing zero at variable j in cluster k, from a Uniform distri-
bution bounded by [0.5 1]. Zero-values for each variable ykj are then sampled
according to a Bernoulli distribution with λkj. Secondly, the remaining val-
ues in the binary data are replaced with continuous values sampled from a
Gaussian distribution, with the mean µkj was randomly generated from the
Uniform(0, 1) distribution and the precision τkj = 100 invariantly for k and j.
Finally, any negative values generated by the normal distributions are replaced
by zero, in order to satisfy the non-negativeness of T-RFLP data.

The MCMC simulation was ran for 90,000 iterations, after the first 10,000
iterations were discarded as a burn-in period. The chain was further thinned at
every 10th iteration to reduce sample autocorrelation. The total time needed
for running the whole procedure was approximately 96 hours on a 2.8GHz
Pentium 4 PC.

The BICM scores on the range of initial Ks from 2 to 20 are summarized
in Figure 2. From the figure it is seen that the model with the initial value of
K = 13 received the highest BICM score. This model provided an optimum
number K = 4 of real (non-empty) clusters, indicating that our method can
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identify the correct cluster number.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Figure 2: BICM scores for our latent class models with initial number of
clusters K from 2 to 20. The highest BICM was found at the model with
initial K = 13. The partition result from this model consists of four non-
empty clusters, which exactly matches the true data generating process.

For a direct comparison with standard clustering tools, we focus here on
the similarity of the data partition with the true clusters. We used k-means,
hierarchical clustering and Autoclass (Cheeseman et al., 1988) for comparison.
For k-means and hierarchical clustering, we conditioned the analysis on the
true value K = 4. For Autoclass clustering, we used the Single Normal CN
Model. The Adjusted Rand index (RI) values (Hubert and Arabie, 1985)
for comparing the true data partition with those obtained by the considered
methods are listed in Table 1.

As can be clearly seen from the table, our method is relatively superior
compared to the standard tools, which is not surprising as it takes into account
the specific features of T-RFLP data. However, k-means clustering is able to
find a partition quite close to the truth with the maximum RI value of 0.9214,
but it must be noted that the average Rand Index from its 100 repetitions
is 0.6121, indicating that there is also a high probability of misclassifications.
In fact, the lowest RI value in this comparison happened to be found by the
k-means method. Furthermore, without the knowledge of true number of
clusters, k-means and hierarchical clustering would hardly provide sufficient
confidence in the prediction results.

As an alternative unsupervised clustering method, Autoclass determines
automatically the number of clusters using a EM algorithm. However, the
experiment result showed that Autoclass tended to produce many more clus-
ters than were present in the underlying data. It suggested 20 clusters for the
simulated data, leading to a low RI (0.2046). One possible explanation may
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Table 1: Classification of the simulated data with K = 4 partitions. The
adjusted rand index by k-means shows a range identified by running the al-
gorithm 100 times on the data. The hierarchical clustering is based on the
Cosine distance metrics.

Methods Adjusted rand index
K-means [0.1690 0.9214]

Hierarchical clustering centroid 0.6601
Hierarchical clustering complete 0.3162

Autoclass 0.2046
Our method 1

be that the discrete-continuous mixture of the data brings a significant viola-
tion to Autoclass’s underlying Gaussian assumptions. With the complex data
structure, Autoclass found better fit when using a larger number of component
distributions (Li and Biswas, 2002).

4 Applications to two real T-RFLP data sets

4.1 The Japanese marine sediment data

4.1.1 Materials and Methods

The first real data set contains samples from marine sediments. The sedi-
ment samples were collected from three bay areas in the Japanese coast line
including Tokyo Bay, Suruga Bay and Sagami Bay, as described previously
in Urakawa et al. (2005). Each sample was collected by slices of the surface
sediment at a certain depth, as denoted in Table 2. The bacterial composi-
tion was determined using the T-RFLP technique, and represented as terminal
fragments in a T-RFLP profile. The corresponding data matrix was analyzed
by the T-BAPS software for a comparison of microbial diversity in these bay
areas.

4.1.2 Data and Results

A total of 24 samples and 255 unique fragment lengths ranging from 35 to 674
bp (base pairs) were identified by the T-RFLP analysis. Figure 4(a) shows
the percentage of zero-values observed in the data. This figure illustrates the
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Depth(cm) 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20
Tokyo Bay S1 S2 S3 S4 S5
Sagami Bay S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
Suruga Bay S16 S17 S18 S19 S20 S21 S22 S23 S24

Table 2: Sampling sites of the 24 sediment samples. Each sample was extracted
at a certain depth level of the sediment at one of the three bay areas.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
−200
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Figure 3: BICM scores for models with different initial Ks. The best model
was found with initial K = 6. The resulting partition identified two clusters,
one of which contains the Tokyo Bay and the Sagami Bay samples and the
other of which contains the Suruga Bay samples.

striking feature of zero-inflatedness in a typical T-RFLP data set. The diffi-
culties in inferring the clusters are further weighted by the limited variability
presented in the profiles. As can be seen in Figure 4(b), there are no obvious
clusters.

We tested our method by considering models with initial Ks from 2 to 15.
For each model, the MCMC sampler was run for 100,000 iterations, discarding
a burn-in period of 50,000 iterations. Further, thinning by storage of every
10th sample led to a collection of 5,000 approximately independent samples.
The BICM score was then calculated on these thinned samples. As shown in
Figure 3, the best model was identified with an initial K = 6. The result-
ing partition showed that samples from the Tokyo Bay and the Sagami Bay
formed a cluster that is separate from the samples from the Suruga Bay. This
geographical structure resolved here indicates that site-specific differences may
have a greater influence on the microbial communities than depth-specific dif-
ferences. This was also supported by previous analysis of respiration quinone
profiling of the microbial communities from the same areas (Urakawa et al.,
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Figure 4: (a) Distribution of percentages of zero-values in the marine sediment
data. The majority of fragment lengths contains zero-values with a proportion
of larger than 0.5. This can be seen as a typical T-RFLP data set where the
zero-inflatedness is commonly observed for most of the fragment lengths. (b)
The peak patterns of the 24 marine sediment T-RFLP samples. This figure
shows only the fluorescent intensity for the first 50 fragment lengths. Each
curve represents a single sample.

2005).

4.2 The Keihin Canal data

4.2.1 Materials and Methods

The objective of this study is elucidation of the influence of wastewater from a
sewage treatment plant on the microbial communities in the Keihin Canal at
the Tokyo Bay. As shown in Figure 5, 18 water samples from the surface and
bottom water were taken from 10 sites along the Keihin canal, starting from
a sewage pipe S1, to the canal’s outlet into the Tokyo Bay S10 (Table 3). At
sites S1 and S2 only the surface water was successfully collected. From S3 to
S10, both the surface and the bottom water were sampled.

It is expected that shift is present in microbial communities from S1 to
S10. Sampling sites S8 to S10 are located in Tokyo Bay which are influenced
by higher salinity and chlorophyll concentration compared to the waste wa-
ter. A vertical salinity gradient was obvious in the canal and a depth-related
stratification in the oxygen concentration was also observed. Therefore, we
also expect differences of microbial communities between surface and bottom
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Figure 5: The sampling sites of the Keihin Canal T-RFLP data.

Sampling sites S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Surface 1 2 3 4 5 6 7 8 9 10
Bottom 11 12 13 14 15 16 17 18

Table 3: The sampling notations for the Keihin Canal T-RFLP Data. Note
that no samples were collected from the bottom water of sites S1 and S2.

waters.
Using T-RFLP analysis, 450 fragment lengths from 50 bp to 500 bp were

identified. We removed 380 fragment lengths which were not observed in any
of the 18 samples and thus kept only 71 informative fragment lengths for data
clustering. Figure 6 shows the histogram of zero-proportions.

Clustering analysis using the T-BAPS software was implemented by choos-
ing initial number of clusters K from 2 to 10. For each initial K, the MCMC
simulation was run for 100,000 iterations after a burn-in period of 50,000 it-
erations. The summaries of posterior distribution were obtained by further
thinning in every 10th of the iterations.

4.2.2 Results

To check that the Markov chain after the burn-in period was long enough to
make accurate posterior inferences, we calculated the MC error for the model
parameters. For each predefined initial K, the MC error is less than 3% of the
standard deviation, indicating that the accuracy of the posterior estimate of
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Figure 6: Distribution of percentages of zero-values in the Keihin Canal data.
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Figure 7: BICM plots for models with initial K from 2 to 10.

deviance was rather satisfactory. Model selection showed that the model with
an initial value of K = 8 received the highest BICM score logπBICM = 640.62
, resulting in an optimum partition of 3 clusters (Figure 7). In fact, the
same partition was uniformly identified by models with K from 4 to 10. An
alternative partition of two clusters was found with K = 2 and 3 . Due to
the uncertain nature of MCMC simulations, we report both of the partition
results in Table 4.

The optimal clustering result confirms our expectation that the microbial
communities in the surface and bottom water belong to distinct community
types. Although the posterior density of cluster-specific parameters, such as
cluster means µ and zero-inflatedness weights λ, may provide further insights
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on characterizing the microbial diversity, we do not report these here in more
details.

We further compared the introduced method with the clustering obtained
by a binary discretization of the data and consequent use of the Bayesian ap-
proach implemented in the BAPS 4 software (see, e.g. Corander and Tang,
2007). The partition given by the BAPS algorithm is the same as Partition
C reported in Table 4. To evaluate the information loss due to the data dis-
cretization, we compared the BICM scores for partition A and C, conditional
on the best model with K = 8. This can be achieved by fixing the allocation
variable Z in our model according to a partition. The difference of BICM
scores between these two partitions is 25.011. Recalling that BICM is an ap-
proximation of the integrated data likelihood, this difference might serve as a
numerical measure of how much information is lost by the data discretization.

Partition A Cluster 1: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
BICM|K=8 = 640.62 Cluster 2: {11, 12, 13, 14, 15, 16, 18}

Cluster 3: {17}
Partition B Cluster 1: {11, 12, 13, 14, 15, 16, 17, 18}

BICM|K=2 = 635.18 Cluster 2: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Partition C Cluster 1: {11, 12, 13, 14, 15, 16, 17, 18}

BICM|K=8 = 615.61 Cluster 2: {2}
Cluster 3: {1, 3, 4, 5, 6, 7, 8, 9, 10}

Table 4: Three partitions of the Keihin Canal T-RFLP Data. Partition A and
B were discovered by our method. Utilizing the method of Corander and Tang
(2007) by data discretization produced Partition C. The partition uncertainty
can be measured by the differences between the corresponding BICM values.

5 Discussion

To identify microbial communities that are similar to each other using T-
RFLP data, it is common to apply some statistical cluster analysis tools.
However, the standard clustering methods cannot be adjusted for the specific
characteristics of such data, and consequently, they neglect a considerable
amount of existing biological information. This is particularly important in the
current context, as the sample sizes in T-RFLP data sets are often fairly small.
In our example analyses we have illustrated how the hierarchical Bayesian
modelling framework can be efficiently utilized to focus on the biologically
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relevant questions and to utilize the existing knowledge about the features of
the considered data.

Choosing appropriate identifiability constraints is quite difficult in the mix-
ture modelling framework and some authors have argued that whatever con-
strains are used, they may not always remove the label-switching problem
efficiently. However, in our simulation studies and further real data analy-
ses, the effect of label-switching was examined by the trace and history of
the MCMC chains. These investigations showed that our current constrains
work very satisfactorily. Some criteria for checking whether label-switching
is a problem in a particular application, are based on examining whether the
posterior of the parameter of interest is unimodal. Moreover, estimation, clus-
tering and posterior inference can be viewed in a decision-theoretic manner,
for details, see Stephens (2000).

Although we did not stress this aspect in our example analyses, it is im-
portant to notice a specific advantage of the model-based methods over the
standard algorithmic approaches. Namely, a statistical model also provides
a probabilistic quantification of the uncertainty related to the cluster param-
eters and to the allocation of an observation to any particular cluster. Ob-
servations having similar posterior probabilities of allocation to alternative
clusters should be deemed uncertain, and thus be given special attention in
the investigation of the results. However, in the considered analyses the poste-
rior probabilities related to the data partition were quite stable and were not
further considered in the presentation of the results.

For biologists working with the microbial communities using T-RFLP as
a molecular tool, it is ideal that appropriate statistical tools are available
for doing the analyses. Therefore, we have implemented our method into a
user-friendly software package (T-BAPS) utilizing internally the OpenBugs
environment for the MCMC simulations. Our package is freely downloadable
from the URL http://www.abo.fi/fak/mnf/mate/jc/software/t-baps.html. It
has built-in graphics for exploring the clustering solutions and it enables an
intuitive investigation of the estimated posterior clustering uncertainties.
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