

Contents

- Quantum computing?
- VTT aims
- A story of one problem
- .. and algorithms to solve it based on quantum annealing and quantum gate computing
- What's next?

Dramatic shift is inevitable

Dramatic shift is inevitable

VTI

The Quantum computer build project at VTT

- Based on 20,7M€ funding received from Govt. of Finland
- Co-innovation project with Finnish start-up IQM resulting from a public procurement process
- Project runs from 2020-2024
- 3-phase project with targets to build at least 5, 20 and 50 qubit superconducting machines

Main research questions

- What problems within selected business domains and use cases are hard for classical computing, but easy for quantum computing?
- Can we develop quantum algorithms to solve the problems?
- How do they scale?
- What kind of QC would be needed to run them more efficiently than classical algorithms?

Computation Problems

© John Preskill

use case

Identification of
quantumly easy
(classically hard)
problems in use cases

- Complex networks
- Computational biology
- Material science
- Telco
- Cryptography
- Next: M achine Learning, fintech

Research goal: Quantum computing applications for realworld problems

Development of
quantum
algorithms

- Quantum annealing
- Quantum walk
- Grover's
- QAOA (Quantum approximate optimization algorithm)
- Next: quantum M L, VQE (Variational-QuantumEigensolver), HW specific algos

A story of one problem - development of Community panning*)

Complex networks

- Complex networks - a complex network is a graph (network) with non-trivial topological features - often occur in networks representing real systems, like computer networks, biological networks, technological networks, brain networks, climate networks, social networks ...
- Problem: community detection

Szemerédi's Regularity Lemma

- Szemerédi's Regularity Lemma (1976) (SRL)
- a major result in 'extremal graph theory'
- huge number of other theoretical results come from SRL
- SRL \rightarrow Green and Tao: there exists arbitrarily long arithmetic series of prime numbers $(\mathbb{P}): \forall s \in \mathbb{N}, \exists p, a: p \in \mathbb{P}, a \in \mathbb{N}$ s.t. $p+k a \in \mathbb{P}, k=0,1,2, \cdots, s \rightarrow$ Fields Medal

Figure: Terry Tao wins Fields Medal in 2006

Szemerédi's Regularity Lemma in brief

- any large graph has a low complexity representation as a collection of bounded number of random like bipartite graphs (regular pairs)
- justifies a kind of stochastic block model
- can be found in poly-time (in theory)

Figure: A caricature of SRL (Google Images)

Bipartite graph

- a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$

Figure: Links only between V_{1} and V_{2}, link density d

Figure: A regular pair? Check for all subsets X and Y

- a bipartite graph is called ϵ-regular (by T.Tao)
- iff for all subsets $X \subset V_{1}, Y \subset V_{2}$:

$$
\begin{aligned}
& |X||Y|\left(d\left(V_{1}, V_{2}\right)-d(X, Y)\right)=O\left(\epsilon\left|V_{1}\right|\left|V_{2}\right|\right) \\
& d(X, Y)=\frac{e(X, Y)}{|X||Y|}, \quad d\left(V_{1}, V_{2}\right)=\frac{e\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|\left|V_{2}\right|}
\end{aligned}
$$

and where $e(S, M)$ is number of links joining S and $M ;|M|$ is number of elements in a set M.

Tao's function for regularity check
Cost function for regularity check:

$$
\begin{aligned}
L(X, Y): & =|X||Y| d\left(V_{1}, V_{2}\right)-e(X, Y)= \\
& \mathbb{E} e(X, Y)-e(X, Y)
\end{aligned}
$$

Range of L defines level of regularity:

Regularity check is probably a quantumly hard problem!

Figure: Function L has huge domain. Its range defines ϵ. Range is hard to find!

$$
L(X, Y):=\mathbb{E} e(X, Y)-e(X, Y)
$$

what is meaning of

$$
\min _{X, Y} L(X, Y) ?
$$

Answer: finding maximally large and dense subgraph

Community detection: main idea*)

$$
\left(X^{*}, Y^{*}\right)=\underset{(X, Y)}{\arg \min } L(X, Y):=\underset{(X, Y)}{\arg \min }\left(|X||Y| d\left(V_{1}, V_{2}\right)-e(X, Y)\right) .
$$

- corresponds in finding subsets where
$e\left(X^{*}, Y^{*}\right) \gg\left|X^{*}\right|\left|Y^{*}\right| d\left(V_{1}, V_{2}\right)$
- in other words, induced subgraph $\left(X^{*}, Y^{*}\right)$ is better connected than the whole graph in average
- communities are subgraphs that have large internal connectivity compared with connectivity to other communities
- finding communities is related to finding dense subgraphs

Community detection algorithm

Reduction to $\min L(X, Y)$ and bipartization

- at the top: a graph with unknown communities
- flip a coin to split nodes into two sets (left and right = bipartition)
- only links between left - and right parts are preserved.
- every community is split into two parts

Figure: The firs step in community detection: forming a bipartite graph

Finding a community step by step

- apply $\min L(X, Y)$ to a graph and take a graph induced by $\left(X^{*}, Y^{*}\right):=\arg \min _{(X, Y) \subset\left(V_{1}, V_{2}\right)} L(X, Y)$ as a new input...
- one round of the algorithm finds one community (green ball)
- by repeating all communities are found
- no need to know beforehand number of communities

Optimisation problem

Quantum annealing for optimisation problems

Quantum Hamiltonian is an operator on Hilbert space:

$$
\mathcal{H}(s)=A(s) \sum_{i} \sigma_{i}^{x}+B(s)\left[\sum_{i} a_{i} \sigma_{i}^{z}+\sum_{i<j} b_{i j} \sigma_{i}^{z} \sigma_{j}^{z}\right]
$$

transverse field

Corresponding classical optimization problem:

$$
\operatorname{Obj}\left(a_{i}, b_{i j} ; q_{i}\right)=\sum_{i} a_{i} q_{i}+\sum_{i<j} b_{i j} q_{i} q_{j}
$$

Ref. D-wave: Quantum Computing Tutorial Part
1: Quantum annealing, QUBOs and more
https://www.youtube.com/watch?v=teraaPiaG8s\&list=PLPvKn
10.5.2021 VTT - beyond the obvious

$$
\begin{aligned}
L(X, Y): & =|X||Y| d\left(V_{1}, V_{2}\right)-e(X, Y)= \\
& \mathbb{E} e(X, Y)-e(X, Y)
\end{aligned}
$$

- assume a bipartite graph $G\left(V_{1}, V_{2}\right)$ with adjacency matrix A $\left((A)_{i, j}:=a_{i, j}=1\right.$ if there is a link between nodes i and j, otherwise $\left.a_{i, j}=0\right)$
- to each node $i \in V_{1} \cup V_{2}$ assign a binary variable $s_{i} \in\{0,1\}$
- by definition $X=\left\{i \in V_{1}: s_{i}=1\right\}$ and $Y=\left\{i \in V_{2}: s_{i}=1\right\}$

As a result $|X||Y|=\sum_{i \in V_{1}, j \in V_{2}} s_{i} s_{j}$ and $e(X, Y)=\sum_{i \in V_{1}, j \in V_{2}} a_{i, j} s_{i} s_{j}$ and

$$
L(X, Y)=\sum_{i \in V_{1}, j \in V_{2}}\left(d\left(V_{1}, V_{2}\right)-a_{i, j}\right) s_{i} s_{j}
$$

Schematic view of Ising model

Figure: Binary variables with values 1 correspond to subsets X and Y in $L(X, Y)$)

Test it on D-wave

VTT

Figure 1: A C6 Chimera graph (left) with 36 unit cells containing 288 qubits. A P4 Pegasus graph (right) with 27 unit cells and several partial cells, containing 264 qubits. The comparatively rich connectivity structure of the P4 is clearly seen.

	2000Q	Advantage
Graph topology	Chimera	Pegasus
Graph size	C16	P16
Number of qubits	>2000	>5000
Number of couplers	>6000	$>35,000$
Couplers per qubit	6	15

Table 1: Typical characteristics of Chimera- and Advantage-generation QPUs.
Ref. D-Wave:The D-Wave Advantage System: An Overview
https://www.dwavesys.com/sites/default/files/14-1049A-A_The_D-Wave_Advantage_System_An_Overview.pdf

Results

Graph size	Simulated annealing	Q2000, 1000 runs	Q2000, 2000 runs	Advantage, 3000 runs	Advantage, 5000 runs	D-wave hybrid solver
50	-83.4084	-82.8032	-83.3472	-83.4084		
100	-231.8772			-212.4072	-214.7441	-231.8770
200	-678.0170		D-wave hybrid found		-678.0166	
500	-2605.4518		better results than laptop PC (qbsolver + simulated annealing)!	-2605.4601		
1000	-9390.1455			-9390.2010		

Quantum gate computing

- QAOA (Quantum Approximate Optimisation Algorithm) is a quantum gate algorithm to approximate the ground state of a k local Hamiltonian (Farhi et al. 2014).
- QAOA can be used to approximate the ground state of an Ising model!
- For this we present our Hamiltonian as:

$$
\begin{gathered}
\mathcal{H}|x, y\rangle=\sum_{i, j} x_{i} w_{i, j} y_{j}|x, y\rangle \\
L(X, Y)=\sum_{i \in V_{1, j \in V_{2}}}\left(d\left(V_{1}, V_{2}\right)-a_{i, j}\right) s_{i} s_{j}
\end{gathered}
$$

The algorithmic steps of the QAOA read as follows:

1. Generate the initi\&state as a uniform superposition of all states the computational basis: $|\psi\rangle_{\mathrm{i}}=H^{\otimes n}|0\rangle^{\otimes n}$.
2. Construct the unitary operator $O(\hat{H}, \gamma)$ withen depends on the angle γ as follows:

3. Construct the operator B which is the sum of all single-bit σ^{x} operators:

$$
\begin{equation*}
B=\sum_{j=1}^{n} \sigma_{j}^{x} . \tag{22}
\end{equation*}
$$

4. Define the angle-dependent quantum state for any integer $p \geq 1$ and $2 p$ angles $\gamma_{1} \ldots \gamma_{p} \equiv \boldsymbol{\gamma}$ and $\beta_{1} \ldots \beta_{p} \equiv \boldsymbol{\beta}$ as follows:

$$
\begin{equation*}
|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle=U\left(B, \beta_{p}\right) U\left(\hat{H}, \gamma_{p}\right) \ldots U\left(B, \beta_{1}\right) U\left(\hat{H}, \gamma_{1}\right)\left|\psi_{0}\right\rangle \tag{23}
\end{equation*}
$$

5. Obtain the expectation of \hat{H} in this state (this step could be performed on a quantum computer),

$$
\begin{equation*}
F_{p}(\boldsymbol{\gamma}, \boldsymbol{\beta})=\langle\boldsymbol{\gamma}, \boldsymbol{\beta}| \hat{H}|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle . \tag{24}
\end{equation*}
$$

6 Update the parameters ($\boldsymbol{\gamma}, \boldsymbol{\beta}$) using a classical (or quantum) optimization algorithm ill order to minimize F_{p}. 7. Iterate over steps 5 and 0 in order to frrd the niminturn vatue of Γ_{p} for the near-optimal values $\left(\boldsymbol{\gamma}^{*}, \boldsymbol{\beta}^{*}\right)$.
8. Plug $\left(\boldsymbol{\gamma}^{*}, \boldsymbol{\beta}^{*}\right)$ into Equation (23) and evolve the initial state of the system to the state $\left|\boldsymbol{\gamma}^{*}, \boldsymbol{\beta}^{*}\right\rangle$.
9. Repeat step 8 with the same angles. A sufficient number of repetitions will produce a state which represents a close enough solution to the ground state of \hat{H}.

VTT

V1 V2

101

VTT

Optimal times: $t_{1}=0.499267$ and $\tau_{1}=1.70518$ with probability of the state $\left|q_{2}, q_{1}, q_{0}\right\rangle=|101\rangle$ equal to 0.463045 .

Simulations: $\mathbb{P}(|101\rangle) \approx 0.46$ and frequency of the same state among 8 thousand repetitions, on IBM's quantum computer Lima, is around 0.38 .

Next we made experiments with the graph and with QAOA having depth $p=2$. We have now four parameters that can be optimized for increasing probability of the state |101〉. The found circuit has the corresponding probability around 0.8. The circuit with the optimal parameters is:

Simulated probability of $|101\rangle$ is 0.8 and the corresponding frequence of this state on IBM (Lima) machine is around 0.6.

11010

IBM simulator

VTT

IBM Lima

IBM Belem

Two rounds, $\mathrm{p}=2$

Optimising $n=3, m=2, p=2$.
M ethod = Powell
elapsed time: 0:00:03.839002
Time per function evaluation 0:00:00.009363
tau0 $=10.116889479098923, \mathrm{t} 0=11.471736256440398$
tau1 $=9.17638190857584$, $\mathrm{t} 1=5.579403784536778$
Best energy: -0.63
State | $11010>$ with prob 0.481
State | 00101> with prob 0.235
State | 00111> with prob 0.027

IBM simulator

IBM Athens

More rounds?

```
Optimising n=3,m=2, p=3.
M ethod = Powell
elapsed time: 0:00:05.946319
Time per function evaluation 0:00:00.010288
tau0 =1.9512700487624643, t0 =2.35804574941005
tau1 =1.5414280095437825, t1 =1.6301424630590888
tau2 =2.7728445061690166, t2 =1.055323840771294
Best energy: -0.557
State | 11010> with highest prob 0.353
Optimising n=3,m=2, p=4.
M ethod = Powell
elapsed time: 0:00:11.298022
Time per function evaluation 0:00:00.011264
tau0 =-2.2575416257019723, t0 =0.8509021588967012
tau1 =1.3366706970924482, t1 =1.1689045404771015
tau2 =-4.612107452590686, t2 = 0.9580506935056163
tau3 =1.278055613216713, t3 =1.4458889821412686
Best energy: -0.68150000000000001
State | 11010> with highest prob 0.532
```

$$
\begin{array}{ll}
\text { V1 } & \text { V2 }
\end{array}
$$

11101100

IBM simulator

IBM M elbourne (16 qubits)

M ore rounds

VTT

$\mathrm{p}=2$
Best energy $=-1.660750$
State | $11111100>$ with prob $0.258,66.048$ times higher than equal prob 0.00390625 .
State | $11101100>$ with prob $0.137,35.072$ times higher than equal prob 0.00390625 .
State |00010111> with prob $0.046,11.776$ times higher than equal prob 0.00390625 .
$p=5$
Best energy $=-1.997125$
State | $11111100>$ with prob $0.406,103.936$ times higher than equal prob 0.00390625 .
State | $11101100>$ with prob $0.188,48.128$ times higher than equal prob 0.00390625 .
State | $11110100>$ with prob $0.032,8.192$ times higher than equal prob 0.00390625 .

VTT

Two rounds
Best energy $=-3.753360$
tau0 $=1.1941295703091928, \mathrm{t0}=13.60773822086078$
tau1 $=3.8860783390590563, \mathrm{t} 1=18.842787584395566$
State | $00001110000001111000>$ of energy 8.64 with prob $0.004,4194.304$ times equal prob 9.5367431640625e-07.
State | 10101110001011111000 > of energy 8.6 with prob $0.004,4194.304$ times equal prob 9.5367431640625e-07.
State | $10101110101011111100>$ of energy 8.24 with prob $0.004,4194.304$ times equal prob $9.5367431640625 \mathrm{e}-07$

Applying community panning to other domains

VTT

- De novo clustering of metagenomics data
- Metagenomics data of a sample can be translated to a graph for finding clusters that are expected to correspond to the species present in the sample.
- However, the clusters may or may not correspond to known microbes, thus providing a way to find novel species.
- Classical approaches exist, but they are CPU-intensive, new algorithms are needed for speed up and to tolerate the errors in the source data.
10.5.2021 VTT - beyond the obvious

Conclusions

- In addition to learning the basics of quantum computing and existing algorithms, we need to focus on developing quantum algorithms
- Especially, for something useful, we need to work with domain experts with knowhow on state-of-the-art classical algorithms
- VTT is preparing projects in the field, please, let's join forces and change the world!

The IBM Quantum Community

Circuits Executed in:
Quantum Hardware
180B
Quantum Simulators
49B
Users
230k

Top countries
United States

Switzerland

Japan
United Kingdom
Poland

New countries
Gambia
Cayman Islands

Ivory Coas

Aim: quantum computing activity

beyOnd the obvious

