

Towards quantum algorithms for real**world problems** Ville Kotovirta (& Hannu Reittu) Quantum algorithms and software / VTT

VTT - beyond the obvious 10/05/2021

Contents

- Quantum computing?
- VTT aims
- A story of one problem
 - .. and algorithms to solve it based on quantum annealing and quantum gate computing
- What's next?

10.5.2021 VTT – beyond the obvious

Source: The COVID-19 High Performance Computing Consortium PI: Prof. Andrés Cisneros, University of North Texas

Dramatic shift is inevitable

7

Dramatic shift is inevitable

Computing power per € (log) Quantum computing (for some computation) Moore's law (classical) 2019, Google. Classical computer cannot anymore simulate programmable circuit on superconducting QC 2020, Chinese researchers: • classical computer cannot Year X = simulate photonic sampling device 2021, D-Wave: simulation of • geometrically frustrated magnets far faster than classically Time https://www.nature.com/articles/s41586-019-1666-5 Spring 2021 https://science.sciencemag.org/content/370/6523/1460/tab-pdf https://www.nature.com/articles/s41467-021-20901-5

The Quantum computer build project at VTT

- Based on 20,7M€ funding received from Govt. of Finland
- Co-innovation project with Finnish start-up IQM resulting from a public procurement process
- Project runs from 2020 2024
- 3-phase project with targets to build at least 5, 20 and 50 qubit superconducting machines

10/05/2021

VTT – beyond the obvious

Main research questions

- What problems within selected business domains and use cases are hard for classical computing, but easy for quantum computing?
- Can we develop quantum algorithms to solve the problems?
- How do they scale?
- What kind of QC would be needed to run them more efficiently than classical algorithms?

Computation Problems

10.5.2021 VTT – beyond the obvious

A story of one problem – development of Community panning*)

10/05/2021 VTT – beyond the obvious

*) Hannu Reittu: theory and algorithm, Ville Kotovirta: programming and testing on QC and simulators

Complex networks

- Complex networks a complex network is a graph (network) with non-trivial topological features - often occur in networks representing real systems, like computer networks, biological networks, technological networks, brain networks, climate networks, social networks ...
- Problem: community detection

10.5.2021 VTT – beyond the obvious

Szemerédi's Regularity Lemma

- Szemerédi's Regularity Lemma (1976) (SRL)
 - a major result in 'extremal graph theory'
 - huge number of other theoretical results come from SRL
 - SRL → Green and Tao: there exists arbitrarily long arithmetic series of prime numbers (P): ∀s ∈ N, ∃p, a : p ∈ P, a ∈ N s.t.
 p + ka ∈ P, k = 0, 1, 2, · · · , s → Fields Medal

Figure: Terry Tao wins Fields Medal in 2006

Szemerédi's Regularity Lemma in brief

- any large graph has a low complexity representation as a collection of bounded number of random like bipartite graphs (regular pairs)
- justifies a kind of stochastic block model
- can be found in poly-time (in theory)

Figure: A caricature of SRL (Google Images)

Bipartite graph

• a bipartite graph with bipartition (V_1, V_2)

Figure: Links only between V_1 and V_2 , link density d

Figure: A regular pair? Check for all subsets X and Y

• a bipartite graph is called ϵ -regular (by T.Tao)

• iff for all subsets
$$X \subset V_1, Y \subset V_2$$
:

 ϵ -regular pair

$$|X||Y|(d(V_1, V_2) - d(X, Y)) = O(\epsilon |V_1||V_2|)$$

$$d(X, Y) = \frac{e(X, Y)}{|X||Y|}, \quad d(V_1, V_2) = \frac{e(V_1, V_2)}{|V_1||V_2|}$$

and where e(S, M) is number of links joining S and M; |M| is number of elements in a set M.

Tao's function for regularity check

Cost function for regularity check:

$$L(X, Y) := |X||Y|d(V_1, V_2) - e(X, Y) =$$
$$\mathbb{E} e(X, Y) - e(X, Y)$$

Range of *L* defines level of regularity:

Figure: Function L has huge domain. Its range defines ϵ . Range is hard to find!

$\min L(X, Y) ?$

$$L(X,Y) := \mathbb{E} e(X,Y) - e(X,Y).$$

what is meaning of

 $\min_{X,Y} L(X,Y)?$

Answer: finding maximally large and dense subgraph

Community detection: main idea *)

$$(X^*, Y^*) = \underset{(X,Y)}{\operatorname{arg\,min}} L(X,Y) := \underset{(X,Y)}{\operatorname{arg\,min}} (|X||Y|d(V_1,V_2) - e(X,Y)).$$

- corresponds in finding subsets where $e(X^*, Y^*) >> |X^*||Y^*|d(V_1, V_2)$
- in other words, induced subgraph (X^*, Y^*) is better connected than the whole graph in average
- communities are subgraphs that have large internal connectivity compared with connectivity to other communities
- finding communities is related to finding dense subgraphs

*) Reittu, Kotovirta, et al. Towards analyzing large graphs with quantum annealing. <u>https://ieeexplore.ieee.org/document/9006174</u>

Community detection algorithm

Reduction to min L(X, Y) and bipartization

- at the top: a graph with unknown communities
- flip a coin to split nodes into two sets (left and right = bipartition)
- only links between left and right parts are preserved.
- every community is split into two parts

Figure: The firs step in community detection: forming a bipartite graph

Finding a community step by step

- apply min L(X, Y) to a graph and take a graph induced by $(X^*, Y^*) := \arg \min_{(X,Y) \subset (V_1, V_2)} L(X, Y)$ as a new input...
- one round of the algorithm finds one community (green ball)
- by repeating all communities are found
- no need to know beforehand number of communities

Quantum annealing for optimisation problems

Quantum Hamiltonian is an operator on Hilbert space:

$$\mathcal{H}(s) = A(s) \sum_{i} \sigma_{i}^{x} + B(s) \left[\sum_{i} a_{i} \sigma_{i}^{z} + \sum_{i < j} b_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right]$$

transverse field

Corresponding classical optimization problem:

$$Obj(a_i, b_{ij}; q_i) = \sum_i a_i q_i + \sum_{i < j} b_{ij} q_i q_j$$

Ref. D-wave: Quantum Computing Tutorial Part 1: Quantum annealing, QUBOs and more <u>https://www.youtube.com/watch?v=teraaPiaG8s&list=PLPvKn</u> <u>T7dgEsujrrP7i_mgbkivBN3J6A8u&index=1</u>

10.5.2021 VTT – beyond the obvious

Ising model

Starting point:

$$L(X, Y) := |X||Y|d(V_1, V_2) - e(X, Y) =$$

 $\mathbb{E} e(X, Y) - e(X, Y)$

• to each node $i \in V_1 \cup V_2$ assign a binary variable $s_i \in \{0, 1\}$

• by definition $X = \{i \in V_1 : s_i = 1\}$ and $Y = \{i \in V_2 : s_i = 1\}$

As a result $|X||Y| = \sum_{i \in V_1, j \in V_2} s_i s_j$ and $e(X, Y) = \sum_{i \in V_1, j \in V_2} a_{i,j} s_i s_j$ and

$$L(X, Y) = \sum_{i \in V_1, j \in V_2} (d(V_1, V_2) - a_{i,j}) s_i s_j$$

2	4
	-

Schematic view of Ising model

Figure: Binary variables with values 1 correspond to subsets X and Y in L(X, Y)

25

Test it on D-wave

10/05/2021

Figure 1: A C6 Chimera graph (left) with 36 unit cells containing 288 qubits. A P4 Pegasus graph (right) with 27 unit cells and several partial cells, containing 264 qubits. The comparatively rich connectivity structure of the P4 is clearly seen.

	2000Q	Advantage Pegasus	
Graph topology	Chimera		
Graph size	C16	P16	
Number of qubits	> 2000	> 5000	
Number of couplers	> 6000	> 35,000	
Couplers per qubit	6	15	

Table 1: Typical characteristics of Chimera- and Advantage-generation QPUs.

VTT – beyond the obvious Ref. D-Wave:The D-Wave Advantage System: An Overview https://www.dwavesys.com/sites/default/files/14-1049A-A_The_D-Wave_Advantage_System_An_Overview.pdf

Results

Graph size	Simulated annealing	Q2000, 1000 runs	Q2000, 2000 runs	Advantage, 3000 runs	Advantage, 5000 runs	D-wave hybrid solver
50	-83.4084	-82.8032	-83.3472	-83.4084		
100	-231.8772			-212.4072	-214.7441	-231.8770
200	-678.0170		D-wave hybrid found better results than laptop PC (qbsolver + simulated annealing) !			-678.0166
500	-2605.45 18					-2605.46 01
1000	-9390.14 55					-9390.20 10

Quantum gate computing

- QAOA (Quantum Approximate Optimisation Algorithm) is a quantum gate algorithm to approximate the ground state of a klocal Hamiltonian (Farhi et al. 2014).
- QAOA can be used to approximate the ground state of an Ising model !
- For this we present our Hamiltonian as:

$$\mathcal{H} |\mathbf{x}, \mathbf{y}\rangle = \sum_{i,j} x_i w_{i,j} y_j |\mathbf{x}, \mathbf{y}\rangle$$
$$\mathcal{L}(\mathbf{X}, \mathbf{Y}) = \sum_{i \in V_1, j \in V_2} (d(V_1, V_2) - a_{i,j}) s_i s_j$$

10/05/2021 VTT – beyond the obvious

The algorithmic steps of the QAOA read as follows:

- 1. Generate the initial state as a uniform superposition of all states in the computational basis: $|\psi\rangle_i = H^{\otimes n} |0\rangle^{\otimes n}$.
- 2. Construct the unitary operator $U(\hat{H},\gamma)$ which depends on the angle γ as follows:

$$U(\hat{H},\gamma) = e^{-i\gamma\hat{H}} = \prod_{\alpha=1}^{m} e^{-i\gamma H_{\alpha}}.$$
(21)

3. Construct the operator B which is the sum of all single-bit σ^x operators:

$$B = \sum_{j=1}^{n} \sigma_j^x.$$
(22)

4. Define the angle-dependent quantum state for any integer $p \ge 1$ and 2p angles $\gamma_1 \dots \gamma_p \equiv \boldsymbol{\gamma}$ and $\beta_1 \dots \beta_p \equiv \boldsymbol{\beta}$ as follows:

$$|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle = U(B, \beta_p) U(\hat{H}, \gamma_p) \dots U(B, \beta_1) U(\hat{H}, \gamma_1) |\psi_0\rangle.$$
(23)
5. Obtain the expectation of \hat{H} in this state (this step could be performed on a quantum computer),

$$F_p(\boldsymbol{\gamma}, \boldsymbol{\beta}) = \langle \boldsymbol{\gamma}, \boldsymbol{\beta} | \, \hat{H} \, | \boldsymbol{\gamma}, \boldsymbol{\beta} \rangle.$$
(24)

6 Opdate the parameters $(\boldsymbol{\gamma}, \boldsymbol{\beta})$ using a classical (or quantum) optimization algorithm in order to minimize F_p .

7. Iterate over steps 5 and 6 in order to find the minimum value of F_p for the near-optimal values $(\boldsymbol{\gamma}^*, \boldsymbol{\beta}^*)$.

8. Plug $(\boldsymbol{\gamma}^*, \boldsymbol{\beta}^*)$ into Equation (23) and evolve the initial state of the system to the state $|\boldsymbol{\gamma}^*, \boldsymbol{\beta}^*\rangle$.

9. Repeat step 8 with the same angles. A sufficient number of repetitions will produce a state which represents a close enough solution to the ground state of \hat{H} .

Zahedinejad & Zaribafiyan, 2017. Combinatorial Optimization on Gate Model Quantum Computers: A Survey https://arxiv.org/pdf/1708.052 94.pdf

 $|q_2, q_1, q_0\rangle = |101\rangle$ equal to 0.463045. RX (2*0.4...) q_e н RX (2*0.4...) Н qı 0.4 0.3 101 2 0.2 0.1 0.0 RX (2*0.4...) Р q2 Н 1.70518 (1.70518)

Optimal times: $t_1 = 0.499267$ and $\tau_1 = 1.70518$ with probability of the state

Simulations: $\mathbb{P}(|101\rangle) \approx 0.46$ and frequency of the same state among 8 thousand repetitions, on IBM's quantum computer Lima, is around 0.38.

Next we made experiments with the graph and with QAOA having depth p = 2. We have now four parameters that can be optimized for increasing probability of the state $|101\rangle$. The found circuit has the corresponding probability around 0.8. The circuit with the optimal parameters is:

Simulated probability of $|101\rangle$ is 0.8 and the corresponding frequence of this state on IBM (Lima) machine is around 0.6.

IBM simulator

IBM Lima

IBM Belem

Optimising n=3, m=2, p=2. Method = Powell elapsed time: 0:00:03.839002 Time per function evaluation 0:00:00.009363 tau0 = 10.116889479098923, t0 = 11.471736256440398 tau1 = 9.17638190857584, t1 = 5.579403784536778 Best energy: -0.63 State |11010> with prob 0.481 State |00101> with prob 0.235 State |00111> with prob 0.027

10.5.2021 VTT – beyond the obvious

Two rounds, p=2

IBM simulator

IBM Athens

More rounds?

VTT

Optimising n=3, m=2, p=3. Method = Powell elapsed time: 0:00:05.946319 Time per function evaluation 0:00:00.010288 tau0 = 1.9512700487624643, t0 = 2.35804574941005 tau1 = 1.5414280095437825, t1 = 1.6301424630590888 tau2 = 2.7728445061690166, t2 = 1.055323840771294 Best energy: -0.557 State |11010> with highest prob 0.353

Optimising n=3, m=2, p=4. Method = Powell elapsed time: 0:00:11.298022 Time per function evaluation 0:00:00.011264 tau0 = -2.2575416257019723, t0 = 0.8509021588967012tau1 = 1.3366706970924482, t1 = 1.1689045404771015tau2 = -4.612107452590686, t2 = 0.9580506935056163tau3 = 1.278055613216713, t3 = 1.4458889821412686Best energy: -0.68150000000001State |11010> with highest prob 0.532 Optimising n=3, m=2, p=5. Method = Powell elapsed time: 0:00:21.385700 Time per function evaluation 0:00:00.012014 tau0 = -1.4699400667586102, t0 = 2.126774293106693tau1 = 0.4385289326847269, t1 = 0.974445950989624tau2 = 2.446442361429776, t2 = 1.402996346891495tau3 = 2.421268443405987, t3 = 1.2375223517742582tau4 = 2.8185891764310496, t4 = 0.74636509943765Best energy: -0.914State |11010> with highest prob 0.88

IBM simulator

IBM Melbourne (16 qubits)

More rounds

р=2

Best energy = -1.660750State $|1111100\rangle$ with prob 0.258 , 66.048 times higher than equal prob 0.00390625. State $|11101100\rangle$ with prob 0.137 , 35.072 times higher than equal prob 0.00390625. State $|00010111\rangle$ with prob 0.046 , 11.776 times higher than equal prob 0.00390625.

p=5

Best energy = -1.997125 State |1111100> with prob 0.406 , 103.936 times higher than equal prob 0.00390625. State |11101100> with prob 0.188 , 48.128 times higher than equal prob 0.00390625. State |11110100> with prob 0.032 , 8.192 times higher than equal prob 0.00390625.

Two rounds Best energy = -3.753360

- tau0 = 1.1941295703091928, t0 = 13.60773822086078
- tau1 = 3.8860783390590563, t1 = 18.842787584395566

State |00001110000001111000> of energy 8.64 with prob 0.004, 4194.304 times equal prob 9.5367431640625e-07.

State |10101110001011111000> of energy 8.6 with prob 0.004, 4194.304 times equal prob 9.5367431640625e-07.

State |10101110101011111100> of energy 8.24 with prob 0.004, 4194.304 times equal prob 9.5367431640625e-07

10.5.2021 VTT – beyond the obvious

Applying community panning to other domains

- De novo clustering of metagenomics data
- Metagenomics data of a sample can be translated to a graph for finding clusters that are expected to correspond to the species present in the sample.
- However, the clusters may or may not correspond to known microbes, thus providing a way to find novel species.
- Classical approaches exist, but they are CPU-intensive, new algorithms are needed for speed up and to tolerate the errors in the source data.

Conclusions

- In addition to learning the basics of quantum computing and existing algorithms, we need to focus on developing quantum algorithms
- Especially, for something useful, we need to work with domain experts with knowhow on state-of-the-art classical algorithms
- VTT is preparing projects in the field, please, let's join forces and change the world !

First Name Surname firstname.surname@vtt.fi +358 1234 5678 @VTTFinland @your_account www.vtt.fi