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Evolution of an open quantum system state operator
ρt = Φt t0(ρt0) from microscopic unitary dynamics

Completely positive dynamical map: existence of
a time t0 when the state operator is in tensor
product form:

Φt t0(ρt0) = TrHE

(
Ut t0 ρt0 ⊗ σt0 U

†
t t0

)
Complete positive map ⇔ Choi-Stinespring repr.:

Φt t0(ρt0) =
∑
i

Vi,t t0 ρt0 V
†
i,t t0∑

i

V†
i,t t0 Vi,t t0 = 1H (trace preserving)

Obs: the inverse (if any) of a completely positive
map is not necessarily completely positive!

σt0 environment

ρt0 system

H = HS ⊗ HE

System

Environment
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Completely positive ̸= completely positive divisible
If a dynamical map Φt t0 is invertible at any time, then it is also divisible
Breuer et al., Reviews of Modern Physics, (2016)

Φt s = Φt t0Φ
−1
s t0

If Φt s is divisible then we can define an infinitesimal generator:

Φt+ε s −Φt s = (Φt+ε t − 1)Φt s = Gt(Φt s) ε+ o(ε)

Universal form of a linear trace preserving generator:

Gt(ρt) = −ı [H ,ρt] +

L∑
ℓ=1

Γℓ,t

(
Lℓ ρt L

†
ℓ −

L†
ℓ Lℓ ρt + ρt L

†
ℓ Lℓ

2

)
.

The fundamental solution is completely positive iff

Γℓ,t ≥ 0 ℓ = 1, . . . ,L & ∀ t
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Lindblad-Gorini-Kossakowski-Sudarshan master
equation Lindblad, Communications in Mathematical Physics, (1976), Gorini et al., Journal of Mathematical Physics, (1976)

Γℓ,t ≥ 0 generate a completely positive dynamics.
Rigorously derived in the weak coupling scaling limit Davies, Quantum Theory of Open

Systems, (1976)

Why weak coupling provides a “sufficient condition” ?
Exponential decay of survival
probabilities in Q.M. only possible
as intermediate asymptotics Khalfin,

Doklady Akademii Nauk SSSR, (1957).
Weak coupling scaling limit rivets
on such intermediate asymptotics.
0 ≤ Γℓ,t ∼ probability per unit of
time.

figure from Brown, Quantum field theory, (1994): continuous specrum etc.

P. M-G (University of Helsinki) QME-Markov 4 / 22



Unraveling in the system’s Hilbert space

Γℓ,t ≥ 0: representation of the state operator as an average over
state vector random paths in the system’s Hilbert space Barchielli and

Belavkin, J. Phys. A: Math. Gen. 24 (1991) 1495–1514, (2005), Dalibard, Castin, and Mølmer, Physical Review Letters, (1992)

ρt = Eψtψ
†
t unraveling ofρt

dψt = dt ft +

L∑
ℓ=1

dνℓ,t

(
Lℓψt

∥Lℓψt∥
−ψt

)

ft = −ıHψt −
L∑
ℓ=1

Γℓ,t
L†
ℓ Lℓψt − ∥Lℓψt∥2

ψt

2

dνℓ,tdνk,t = δℓ,kdνℓ,t

E
(
dνℓ,t

∣∣ψt, ψ̄t
)
= Γℓ,t ∥Lℓψt∥2 dt

ℓ,k= 1, . . . ,L
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The role of complete positivity in unraveling

dρt = E
(
(dψt)ψ

†
t +ψtdψ

†
t + (dψt)(dψ

†
t )
) dt dνk,t

dt 0 0

dνℓ ,t 0 δℓkdνℓt

Weighing factors Γℓ,t identified as jump rates.
Upon taking the expectation value “E”

E(dψt)(dψ
†
t ) =

L∑
ℓ=1

E

(
E(dνℓ,t|ψt, ψ̄t)

(
Lℓψt

∥Lℓψt∥
−ψt

)(
Lℓψt

∥Lℓψt∥
−ψt

)†
)

Prefactor of Lℓ ρt L
†
ℓ terms in the master equation positive by costruction.
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Why unraveling the state operator?

Three reasons Wiseman, Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, (1996)

Indirect (continuous time) measurement: unraveling relates the statistics
of individual random detection events to the state operator. Application
example: quantum state parameter prediction and retrodiction.

Numerical integration in high dimensional Hilbert spaces:

N-state system Real numbers
to store per step

Expected computing
time scaling

Direct integration
of the master equation O(N2) O(N4)

Integration
via unraveling O(2 N)

O(N × N2)
N= # (realizations)

Foundational reason: element of a still missing theory of quantum state
reduction? Bassi and Ghirardi, Physics Reports, (2003)
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Master equations from microscopic dynamics

The Γℓ,t’s may take negative values.

Exact master equations from certain
integrable models (e.g. spontaneous
emission near the edge of a photonic
band gap John and Quang, Physical Review A, (1994)).
Exact master equations from Gaussian
models (e.g. central boson/fermion model
Tu and Zhang, Physical Review B, (2008)).
Master equations generated by time
convolutionless perturbation theory (
Hashitsumae, Shibata, and Shingū, Journal of Statistical Physics, (1977)).

Survival probability at strong
coupling

figure from Wolkanowski, “Resonances and poles in the

second Riemann sheet”, (2013)
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Is it possible to unravel non-completely positive
dynamics?

Stochastic unravelling in the doubled Hilbert space Breuer, Kappler, and

Petruccione, Physical Review A, (1999)

Ψt =

[
ψt

φt

]
& ρt = Eψtφ

†
t

Ψt obeys an ordinary stochastic differential equation with Poisson noise
Proliferation of degrees of freedom

“Non Markovian” Monte Carlo wave function Piilo et al., Physical Review Letters, (2008)

Evolution in the Hilbert space of the system
state vector evolution NOT governed by ordinary stocastic differential
equations
algorithm keeps memory of jumps to produce “reversed ” jumps.
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Completely bounded divisible dynamics
Master equation

∂tρt = −ı [Ht ,ρt] +

L∑
ℓ=1

wℓ,t

2

([
Lℓ ,ρt L

†
ℓ

]
+
[
Lℓ ρt ,L

†
ℓ

])
.

The weights of the Lindblad operators are bounded |wℓ,t| < ∞
The weights of the Lindblad operators are NOT sign definite wℓ,t ⋚ 0
The fundamental solution is a completely bounded map (CBM)

CBM canonical form: Wittstock-Paulsen decomposition Wittstock, Journal of

Functional Analysis, (1981) Paulsen, Proceedings of the American Mathematical Society, (1982) Paulsen, Completely Bounded Maps and Operator

Algebras, (2003)

ρt =
N(+)∑
a=1

V
(+)
a,t t0 ρt0 V

(+)†
a,t t0 −

N(−)∑
a=1

V
(−)
a,t t0 ρt0 V

(−)†
a,t t0

Physics interpretation: compatibility domain problem Pechukas, Physical Review Letters, (1994), Shaji

and Sudarshan, Physics Letters A, (2005), Hartmann and Strunz, Physical Review A, (2020)
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Unraveling by the influence martingale arXiv:2102.10355

The unraveling Ansatz: ρt = Eµtψtψ
†
t

dψt = dt ft +

L∑
ℓ=1

dνℓ,t

(
Lℓψt

∥Lℓψt∥
−ψt

)

dµt = µt

L∑
ℓ=1

(
wℓ,t

rℓ,t
− 1
)

dιℓ,t

ft = −ıHψt −
L∑
ℓ=1

wℓ,t
L†
ℓ Lℓψt − ∥Lℓψt∥2

ψt

2

E
(
dνℓ,t

∣∣ψt, ψ̄t
)
= rℓ,t ∥Lℓψt∥2 dt

dιℓ,t = dνℓ,t − E
(
dνℓ,t

∣∣ψt, ψ̄t
) dνℓ,tdνk,t = δℓ,kdνℓ,t

for ℓ,k= 1, . . . ,L
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Proof
Just apply textbook rules of stochastic calculus for Poisson white noise:

Martingale property

dρt = d
(
Eµtψtψ

†
t

)
= E

(
�����XXXXX(dµt)ψtψ

†
t + µtd(ψtψ

†
t ) + (dµt)d(ψtψ

†
t )
)

Recovery of the master equation

d
dt

E(µtψtψ
†
t ) = −ı [H ,ρt]

−
L∑
ℓ=1

wℓ,t
L†
ℓ Lℓ ρt + ρt L

†
ℓ Lℓ

2
+

L∑
ℓ=1

(
1 +

(
wℓ,t

rℓ,t
− 1
))

rℓ,t Lℓ ρt L
†
ℓ

−
L∑
ℓ=1

((
1 +

(
wℓ,t

rℓ,t
− 1
))

rℓ,t − wℓ,t

)
E(∥Lℓψt∥2

µtψtψ
†
t )
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Why the influence martingale?

Stochastic Wittstock–Paulsen decomposition
The unraveling enjoys the Markov property

µ
(±)
t = max(0,±µt)

hence at any t

ρt = E
(
µ
(+)
t ψtψ

†
t − µ

(−)
t ψtψ

†
t

)
The influence is needed because a completely bounded state vector
must be computed as the statistical average of terms reproducing the
Wittstock-Paulsen decomposition
In the completely positive case reduces to a (trivial) change of measure
(Girsanov formula).
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Evolution of the state vector

State vector evolution preserves the Bloch hyper-sphere

d
(
∥ψt∥2

)
=

L∑
ℓ=1

(
dνℓ,t − wℓ,t ∥Lℓψt∥2 dt

) (
1 − ∥ψt∥2

)

dµt = µt

L∑
ℓ=1

(
wℓ,t

rℓ,t
− 1
)(

dνℓ,t − E
(
dνℓ,t

∣∣ψt, ψ̄t
))

weights and rates

Weights {wℓ,t}Lℓ=1 predicted by theoretical calculation from the
microscopic model

Rates {rℓ,t}Lℓ=1 inferred from measurement: contextual to unraveling.

It is always possible to find a choice of {rℓ,t}Lℓ=1 such that Eψtψ
†
t satisfies

a LGKS equation.
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Photonic band gap John and Quang, Physical Review A, (1994)

Exact master equation, violates Kossakowski conditions

ρ̇t =
St

2 ı
[σ+σ− ,ρt] + Γt ([σ−ρt , σ+] + [σ− ,ρtσ+])

∥φt∥2

µt∥φt∥2

µt

0 5 10 15

0

0.5

1

sum

ψ0 = (e+ g)/
√
2

ψ0 = (e− g)/
√
2
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Non positive divisible dynamics
Master equation with negative definite eigenvalue of the rate
operatorCaiaffa, Smirne, and Bassi, Physical Review A, (2017)

d
dt
ρt =

∑
i=x ,y ,z

Γi,t(σiρtσi − ρt)

0 1 2
−1

0

1

t

Γx,t

Γy,t

Γz,t

0 1 2
0.4

0.6

0.8

t

103 realisations

104 realisations

e†ρte, exact sol.
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Redfield equation
two non-interacting qubits in contact with the same zero
temperature bath

H =ω1σ+σ− + ω2σ̃+σ− +
∑

k

(
ωkb†kbk + gk(σ+bk + b†

kσ−) + g̃k(σ̃+bk + b†
k σ̃−)

)
Redfield equation does not preserve
the positivity of the state operator.

ρ̇t = −ı [H+S,ρt]+∑
ℓ=±

λℓ

(
Lℓ ρt L

†
ℓ −

L†
ℓ Lℓ ρt + ρt L

†
ℓ Lℓ

2

)

with

λ+ ≥ 0 & λ− ≤ 0
0 1 2 3 4 5

−0.5

0

0.5

1

1.5

t

tr(L−L
†
−L+L†+ρt)

tr(L†−L−L+L†+ρt)

tr(L−L
†
−L
†
+L+ρt)
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Unraveling of calorimetric measurement

“Hybrid” state operator

σt(ȷ) = TrE

(
e−ȷ HEe−ı H t e−β HE

Z
⊗ ρ0 eı H t

)

Central fermion model

H = ω a† a+

N∑
k=1

Ek c
†
k ck +

N∑
k=1

(
ḡk a c

†
k +gk ck a

†
)

Exact master equation generating a completely bounded dynamics
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Unraveling with an effective energy exchange process
Unraveling Ansatz

σt = E
(

e−ȷϵt µt ψtψ
†
t

)
Derive the dynamics of ψt AND ϵt

Evolution at zero temperature: model problem 1 + 1 fermion
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Systems with many degrees of freedom: qubits with
non-positive dynamics
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Population of sites 1, 4 and 11 of a qubit
chain of L = 11 elements. The marks show
the result of the stochastic evolution and
the full black lines the result of
numerically integrating the master
equation. Only the first qubit has
non-positive weight.
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(a) Computation time for both the Master
Equation and Influence Martingale
method as a function of the amount of
qubits in the chain. For the stochastic
method we generated 1300 realizations.
(b) The root mean square error of the
populations averaged over all individual
sites.
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Conclusions and outlook

Quantum trajectory theory for completely bounded dynamics: master
equations beyond weak coupling theory e.g. Redfield equation.
Thermodynamics beyond weak coupling: influence martingale models
heat flow from and to the system.
Existence of generalized fluctuation relations.
Applications to state retrodiction and to parameter estimation
(compatibility domain problem!).
Numerical applications: what is the optimal choice of the Poisson rates to
generate ostensible distributions?
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