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Summary 
1) Large Deviations and Localization 

2) Discrete Non-Linear Schrödinger Equation (DNLSE) 

3) DNLSE: State of the art and the problem of ensembles 

4) Localization mechanism 

5) Finite-size effects, negative temperature, participation ratio 

6) A mixed-order transition, analogies with glasses 

7) Differences with Many-Body Localization 

8) Role of dimensionality (none) 

9) Condensates and black holes 

10) Conclusions 

(0) 



The ‘Linear Statistic’ problem (1) 

Linear Statistic Problem: probability distribution of a sum of random variables 

PN (M) =

Z NY

i=1

dmi p(m1, . . . ,mN ) �

 
M �

NX

i=1

mi

!

Simple case: independent identically distributed random variables 

p(m1, . . . ,mN ) =
NY

i=1

p(mi)
hm2i < 1

hmi < 1 Finite mean 

Finite variance 

|M �Nhmi| ⇠ N

Large Deviations 

|M �Nhmi| ⇠
p
N

Central Limit Theorem 

PN (M) =
1p

2⇡�N
e�

(X�Nhmi)2

2�2N

PN (M) ⇠ e�N I(m) m = M/N
Rate function 



‘Linear Statistic’ and Large Deviations (2) 

PN (M) =

Z NY

i=1

dmi p(m1, . . . ,mN ) �

 
M �

NX

i=1

mi

!

Simple case: independent identically distributed random variables 

p(m1, . . . ,mN ) =
NY

i=1

p(mi)
hm2i < 1

hmi < 1 Finite mean 

Finite variance 

Fat tailed 
distribution Localization 

Linear Statistic Problem: probability distribution of a sum of random variables 

e�m < p(m) <
1

m2

PN (M) ⇠ p(M)

Whole sum is taken up 
by a single variable 

|M �Nhmi| ⇠ N

Large Deviations 



‘Linear Statistic’ and Large Deviations (2) 

Fat tailed 
distribution Localization 

M ⇠ mi

Mass transport model: stationary partition function 

N
N � 1

e�m < p(m) <
1

m2

Whole sum is taken up by 
a single variable 

Partition function 

 ‘Nature of the condensate in mass transport models’, 
Majumdar, Evans, Zia, PRL 94, 180601 (2006)  

ZN (M) =

Z 1

0

NY

i=1

dmi

NY

i=1

p(mi) �

 
M �

NX

i=1

mi

!

ZN (M) ⇠ p(M)

Participation Ratio 

Y2(M) =

* Pn
i=1 m

2
i⇣PN

i=1 mi

⌘2

+

M < Nhmi =) Y2(M) ⇠ 1/N

M > Nhmi =) Y2(M) = O(1)



‘Localization in Discrete Non-Linear Schrödinger Equation’ 

Inspiration 

(3) 

‘A First-Order Dynamical Transition for a Driven Run-and-Tumble particle’  
(G. Gradenigo, S. N Majumdar, JSTAT, 2019) 

Discrete Non-Linear Schrödinger Equation (DNLSE) 

| i|2

i

PHENOMENON  
Condensate wavefunction 
localized at high enegies 
(numerical evidences) 

| i|2

i

H = E < Ec
H = E > Ec

Key observation: the precise characterization of the transition comes from 
subleading corrections to the rate function. 

ZN

✓
z =

M �Nhmi
N↵

◆
⇠ e�NI(hmi)�N1�↵C(z) ↵ < 1

‘Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger 
equation’, G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, EPJ-E 44, 1-6 (2021) 

‘Localization transition in the discrete nonlinear Scrdinger equation: ensembles inequivalence and 
negative temperatures’, G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, J. Stat. Mech. 023201 (2021) 



Discrete Non-Linear Schrödinger Equation (DNLSE) 
A semiclassical Approximation 

Ĥ =

Z
d3x  ̂†(x)


� ~2
2m

r2 + V
ext

�
 ̂(x) +

4⇡~2as
2m

Z
d3x  ̂†(x) ̂†(x) ̂(x) ̂(x)

Second-quantization Hamiltonian of interacting bosons condensate 

V (x� y) = �(x� y) Repulsive contact interactions 

Bogoliubov approximation 

 (x) = h ̂(x)i Condensate wave-function   (c-number)  

Expand the Hamiltonian up to second order in powers of 
(small quantum fluctuations around the mean-field solution) 

'̂(x), '̂†(x)

 ̂(x) =  (x) + '̂(x)

'̂(x) =  ̂(x)� h ̂(x)i Deviation opeartor 

Ĥ = K0 + K̂1 + K̂2 + . . . K̂1 = O('̂) K̂2 = O('̂2)

(4) 

‘Discrete Breathers in Bose-Einstein Condensates’, Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011)  



Discrete Non-Linear Schrödinger Equation (DNLSE) 
A semiclassical Approximation 

Expand the Hamiltonian up to second order in powers of 
(small quantum fluctuations around the mean-field solution) 

'̂(x), '̂†(x)

Ĥ = K0 + K̂1 + K̂2 + . . . K̂1 = O('̂) K̂2 = O('̂2)

K̂1 = 0


� ~2
2m

r2 + V
ext

(x)

�
 (x)� ⌫

2
| (x)|2 (x) = 0

Bogoliubov approximation 

 (x) = h ̂(x)i Condensate wave-function   (c-number)  

 ̂(x) =  (x) + '̂(x)

'̂(x) =  ̂(x)� h ̂(x)i Deviation opeartor 

Gross-Pitaevskii Equation: non-linear equation for the ‘order 
parameter’ of a quantum transition (semiclassical approximation) 

(5) 



Discrete Non-Linear Schrödinger Equation (DNLSE) 
A semiclassical Approximation 

V

ext

(x) =
~2!2

4Er
sin2(k

L

x) +
m⌦2

2

�
y

2 + z

2

�

Harmonic traps  (y,z)-plane Periodic modulation - x  

Effectively on a  
1-dimensional lattice 

Hamiltonian system 
on a lattice H =

NX

i=1

 ⇤
i i+1 + 

⇤
i+1 i +

⌫

2

NX

i=1

| i|2

Canonical conjugate 
variables (classical) { ⇤

i , j} = i �ij/~

K̂1 = 0


� ~2
2m

r2 + V
ext

(x)

�
 (x)� ⌫

2
| (x)|2 (x) = 0

Gross-Pitaevskii Equation: non-linear equation for the ‘order 
parameter’ of a quantum transition (semiclassical approximation) 

i ̇i = � @H
@ ⇤

i

(6) 

Poisson parentheses 



Discrete Non-Linear Schrödinger Equation (DNLSE) 
A semiclassical Approximation 

Hamiltonian system 
on a lattice H =

NX

i=1

 ⇤
i i+1 + 

⇤
i+1 i +

⌫

2

NX

i=1

| i|2

Canonical conjugate 
variables { ⇤

i , j} = i �ij/~

K̂1 = 0


� ~2
2m

r2 + V
ext

(x)

�
 (x)� ⌫

2
| (x)|2 (x) = 0

Gross-Pitaevskii Equation: non-linear equation for the ‘order 
parameter’ of a quantum transition (semiclassical approximation) 

i ̇i = � @H
@ ⇤

i

HAMILTONIAN EQUILIBRIUM  
STATISTICAL MECHANICS 

(7) 



Discrete Non-Linear Schrödinger Equation (DNLSE) 

i
@ i

@t
= � @H

@ ⇤
i

= �( i+1 +  i�1)� ⌫| i|2 i

H =
NX

i=1

( ⇤
i  i+1 +  i 

⇤
i+1) +

⌫

2

NX

i=1

| i|4
ENERGY (conserved) 

Condensate wave-function (order parameter) 

| i|2

i

PHENOMENON  
Condensate wavefunction 
localized at high enegies 
(numerical evidences) 

| i|2

i

1) WHICH KIND OF PHASE TRANSITION ? 

H = E < Ec
H = E > Ec

h ̂i =  (xi, t) =  i(t)

PARTICLES NUMBER (conserved) 

A =
NX

i=1

| i|2

(8) 

2) WHICH STATISTICAL ENSEMBLE? 

3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion) 

4) IS DISORDER NECESSARY FOR LOCALIZATION? 



i
@ i

@t
= � @H

@ ⇤
i

= �( i+1 +  i�1)� ⌫| i|2 i

Microcanonical 
Partition function 

Particle number conservation Energy conservation 

The ‘Fundamental Ensemble’ : MICROCANONICAL 

Discrete Non-Linear Schrödinger Equation (DNLSE) 

Condensate wave-function (order parameter) h ̂i =  (xi, t) =  i(t)

H =
NX

i=1

( ⇤
i  i+1 +  i 

⇤
i+1) +

⌫

2

NX

i=1

| i|4
ENERGY (conserved) PARTICLES NUMBER (conserved) 

A =
NX

i=1

| i|2

(9) 

⌦N (A,E) =

Z NY

i=1

d i �(A�
NX

i=1

| i|2) � (E �H[ ⇤
i , i])

| i|2

i

PHENOMENON  
Condensate wavefunction 
localized at high enegies 
(numerical evidences) 

| i|2

i

H = E < Ec
H = E > Ec



DNLSE theory: state of the art 

Microcanonical 
Grand Canonical ZN (µ,�) =

Z 1

0
dA dE e��E�µA ⌦N (A,E)

Grand Canonical: exact solution with trasfer matrix techniques! 

a = A/N

Transition line at infinite temperature:  � = 0

PROBLEM 

Many numerical evidences that the localized 
phase has negative temperature, T<0 

‘Discrete Breathers and Negative-Temperature States’,  
S. Iubini, R. Franzosi, R. Livi, G.-L. Oppo, A. Politi, 
New J. Phys. 15, 023032 (2013) 

ε = 2 a2 

HOW CAN β<0 BE CONSISTENT WITH               ?  e��H IT CANNOT! 

(10) 

‘Statistical Mechanics of a Discrete Non-Linear System’,  
K.O. Rasmussen, T. Cretegny, P.G. Kevridis, N. Gronbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000) 

Delocalized Localized Phase 

"
=

E
/N



i
@ i

@t
= � @H

@ ⇤
i

= �( i+1 +  i�1)� ⌫| i|2 i

⌦N (A,E) =

Z NY

i=1

d i �

 
A�

NX

i=1

| i|2
!
�

 
E �

NX

i=1

| i|4
!

Neglect hopping terms  
(random-phase argument) Particle number conservation Energy conservation 

ONLY THE MICROCANONICAL IS CORRECT: GO FOR IT! 

Discrete Non-Linear Schrödinger Equation (DNLSE) 

Condensate wave-function (order parameter) h ̂i =  (xi, t) =  i(t)

H =
NX

i=1

( ⇤
i  i+1 +  i 

⇤
i+1) +

⌫

2

NX

i=1

| i|4
ENERGY (conserved) 

| i|2

i

| i|2

i

H = E < Ec
H = E > Ec

PARTICLES NUMBER (conserved) 

A =
NX

i=1

| i|2

(11) 

PHENOMENON  
Condensate wavefunction 

localize at high enegies 
(numerical evidences) 



ENSEMBLES IN-EQUIVALENCE 

Grand-Canonical 
Micro-Canonical 

Laplace Transform 

(12) 

•
0

β0 β0

Γ
(+)

Γ
(−)

Re(β)

Im(β)

•
•

Inverse Laplace 
Transform 

ENSEMBLES are equivalent when saddle-points equations have real solutions 

Can I find real β and µ for 
ANY choice of E and A? 

DNLSE: For E > Eth there is no β !  

Analiticity 
properties of 

ZN (µ,�) =

Z 1

0
dA dE e��E�µA ⌦N (A,E) = [z(µ,�)]N

⌦N (A,E) =

Z µ0�i1

µ0+i1
dµ

Z �0�i1

�0�i1
d� eµA+�E+N log z(µ,�)

E

N
= � @

@�
log[z(µ,�)]

A

N
= � @

@µ
log[z(µ,�)]

z(µ,�)



ENSEMBLES IN-EQUIVALENCE 

Grand-Canonical 
Micro-Canonical 

Laplace Transform 

(13) 

•
0

β0 β0

Γ
(+)

Γ
(−)

Re(β)

Im(β)

•
•

Inverse Laplace 
Transform 

Can I find real β and µ for 
ANY choice of E and A? 

Analiticity 
properties of 

ZN (µ,�) =

Z 1

0
dA dE e��E�µA ⌦N (A,E) = [z(µ,�)]N

⌦N (A,E) =

Z µ0�i1

µ0+i1
dµ

Z �0�i1

�0�i1
d� eµA+�E+N log z(µ,�)

E

N
= � @

@�
log[z(µ,�)]

z(µ,�)

z(µ,�) =
µ
p
⇡

2

p
�

exp

✓
µ2

4�

◆
Erfc

✓
µ

2

p
�

◆

ENSEMBLES are equivalent when saddle-points equations have real solutions 



SKETCHY MECHANISM OF LOCALIZATION 

E > Eth

1) Cannot reach such energy by equal sharing among d.o.f. 

2) The amount          is identically distributed among the 
degrees of freedom (infinite temperature background) 

Eth

3) Excess energy is put into the localized phase 

| i|2
�E = E � Eth

a = A/N

�E/N

(14) 

Grand-Canonical 
Micro-Canonical 

Laplace Transform 

ZN (µ,�) =

Z 1

0
dA dE e��E�µA ⌦N (A,E) = [z(µ,�)]N

⌦N (A,E) =

Z µ0�i1

µ0+i1
dµ

Z �0�i1

�0�i1
d� eµA+�E+N log z(µ,�) Inverse Laplace 

Transform 

"
=

E
/N

ENSEMBLES are equivalent when saddle-points equations have real solutions 



THE LARGE DEVIATIONS APPROACH 

⌦N (A,E) =

Z NY

i=1

d i �

 
A�

NX

i=1

| i|2
!
�

 
E �

NX

i=1

| i|4
!

Microcanonical 
Ensemble 

Release constraint on 
‘particle number’ ⌦N (µ,E) =

Z nY

i=1

d i e
�µ

PN
i=1 | i|2�

 
E �

NX

i=1

| i|4
!

Change of 
variables  

 = rei�

⌦N (µ,E) ⇡
Z nY

i=1


d"i

e�µ
p
"i

p
"i

�
�

 
E �

NX

i=1

"i

!

r4i = "i

1)  

2)  

Partition 
Function = Probability distribution of 

fat tailed variables sum 

Localization e�"i <
e�µ

p
"i

p
"i

<
1

"2i
E > Nh"iµ = Eth

(15) 

Slow decay of the energy per site 
probability distribution function 



MATCHING ARGUMENT FOR LOCALIZATION 

⌦N (A,E) ⇡ e�
p
E�Eth

Extreme large 
deviations 

⌦N (A,E) ⇡ e�
(E�Eth)2

2�2N

Gaussian 
regime 

E � Eth ⇠
p
N E � Eth ⇠ N

Matching regime (you set the scale) E � Eth

N2/3
= ⇣ ⇠ 1

Z �0+i1

�0�i1
d� e�E+N log[z(�,µ)]

Zoom in the complex plane around the origin 
to propertly account for the cut contribution 

•
0

β0 β0

Γ
(+)

Γ
(−)

Re(β)

Im(β)

•
•

�̂ = N1/3� ⇠ 1

Expand this guy at  
the origin 

(16) 



⌦N (A,E) ⇡ e�
p
E�Eth

Extreme large 
deviations 

⌦N (A,E) ⇡ e�
(E�Eth)2

2�2N

Gaussian 
regime 

E � Eth ⇠
p
N E � Eth ⇠ N

E � Eth

N2/3
= ⇣ ⇠ 1

Z �0+i1

�0�i1
d� e�E+N log[z(�,µ)]

=

1

�
p
2⇡N

exp

⇢
� (E � Eth)

2

2�2N

�
+ C(E)

�̂ = N1/3� ⇠ 1

•
0

β0 β0

Γ
(+)

Γ
(−)

Re(β)

Im(β)

•
•

Non-analiticity at the cut 

(17) MATCHING ARGUMENT FOR LOCALIZATION 

Matching regime (you set the scale) 



⌦N (A,E) ⇡ e�
p
E�Eth

Extreme large 
deviations 

⌦N (A,E) ⇡ e�
(E�Eth)2

2�2N

Gaussian 
regime 

E � Eth ⇠
p
N E � Eth ⇠ N

⌦N (A,E) ⇡ eN [1+log(⇡a)]
h
e�N1/3⇣2/(2�2

) + e�N1/3�(⇣)
i

E � Eth

N2/3
= ⇣ ⇠ 1 �̂ = N1/3� ⇠ 1

Non-analiticity at the cut 

(18) 

⌦N (A,E) ⇠ exp

n

N [1 + log(⇡a)]�N1/3
 (⇣)

o

 (⇣) = min
�
⇣2/(2�2),�(⇣)

 ⇣2

2�2
= �(⇣) =) ⇣c =

Ec � Eth

N2/3

MATCHING ARGUMENT FOR LOCALIZATION 

Matching regime (you set the scale) 



⌦N (A,E) ⇡ e�
p
E�Eth

Extreme large 
deviations 

⌦N (A,E) ⇡ e�
(E�Eth)2

2�2N

Gaussian 
regime 

E � Eth ⇠
p
N E � Eth ⇠ N

E � Eth

N2/3
= ⇣ ⇠ 1 �̂ = N1/3� ⇠ 1

(19) 

⌦N (A,E) ⇠ exp

n

N [1 + log(⇡a)]�N1/3
 (⇣)

o

 (⇣) = min
�
⇣2/(2�2),�(⇣)

 

⇣ � 1 =) �(⇣) = ⇣1/2

s
2

h"i �
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4"
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+O(⇣�5/2)
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MATCHING ARGUMENT FOR LOCALIZATION 

Matching regime (you set the scale) 

e�"i <
e�µ

p
"i

p
"i

<
1

"2i



THE MAIN RESULT: MICROCANONICAL ENTROPY 

Microcanonical Entropy 

SN (A,E) = k log[⌦N (A,E)]

(20) 

The first, the one … and the ONLY 

Background Entropy (energy indipendent) 

SN (A,E) = ⌃0(A) + ⌃1(E,A)

a = A/N

�E/N

CONDENSATE ENTROPY (SUBEXTENSIVE) 

E > Eth

"
=

E
/N

"th = 2 a2

�E = E � Eth

⌃0(A) = N [1 + log(⇡a)]



THE MAIN RESULT: MICROCANONICAL ENTROPY 

Microcanonical Entropy 

SN (A,E) = k log[⌦N (A,E)]

"� "th ⇠ 1/
p
N

"� "th ⇠ 1/N1/3

"� "th ⇠ 1

Gaussian 

Matching 

Large Deviations 

(21) 

The first, the one … and the ONLY 

Three regimes 

� N

2�2
("� "th)

2

�N1/2p"� "th

"th = 2 a2

⌃1(E,A) =

CONDENSATE 
ENTROPY  

�N1/3 (⇣)

⇣ = N1/3("� "th)



� N

2�2
("� "th)

2

�N1/2p"� "th

"� "th ⇠ 1/
p
N

"� "th ⇠ 1/N1/3

"� "th ⇠ 1

Gaussian 

Matching 

Large Deviations 

"th = 2 a2

Finite-size correction to 
the critical line 

THE MAIN RESULT: MICROCANONICAL ENTROPY (22) 

⌃1(E,A) =
"
=

E
/N

CONDENSATE 
ENTROPY  

�N1/3 (⇣)

⇣c = N1/3("c � "th)

 0(⇣c) = jump

"c = "th +
⇣c

N1/3

localized
� < 0

delocalized
 � < 0 

delocalized
� > 0

⇣ = N1/3("� "th)



localized
� < 0

delocalized
 � < 0 

delocalized
� > 0

� N

2�2
("� "th)

2

�N1/2p"� "th

"� "th ⇠ 1/
p
N

"� "th ⇠ 1/N1/3

"� "th ⇠ 1

Gaussian 

Matching 

Large Deviations 

"th = 2 a2

"th < " < "c = Uninteresting ? 

" > "th =) @S

@E
=

1

T
< 0

Not really… 

NEGATIVE TEMPERATURE 

NEGATIVE TEMPERATURE – SUBEXTENSIVE ENTROPY (23) 

⌃1(E,A) =

"
=

E
/N

CONDENSATE 
ENTROPY  

�N1/3 (⇣)

T = N1/2p"� "th⇣ = N1/3("� "th)



"th < " < "c = Uninteresting ? 

" > "th =) @S

@E
=

1

T
< 0

Not really… 

NEGATIVE TEMPERATURE 

0 0.2 0.4 0.6 0.8 1

n/N 
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N = 511
N = 1023
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n/N
1/2
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2
β

(a)

‘A chain, A bath, A sink and a Wall’,  
S. Iubini, S. Lepri, R. Livi, G.-L. Oppo, A. Politi, 
Entropy  (2017) 

Discrete Non-Linear Schrödinger 
Equation coupled at the boundaries 

with reservoirs at different temperature 

PROBING THE NEGATIVE TEMPEATURE  (24) 
"
=

E
/N

localized
� < 0

delocalized
 � < 0 

delocalized
� > 0

"
=

E
/N



localized
� < 0

delocalized
 � < 0 

delocalized
� > 0

" > "c =) lim
N!1

PN = c > 0

" < "c =) lim
N!1

PN ⇠ 1/N

Consistent with non-analyticity of Entropy 

The order parameter jumps at 
the dotted blue line! 

(25) ORDER PARAMETER: PARTICIPATION RATIO 
"
=

E
/N

Finite-size correction to 
the critical line 

⇣c = N1/3("c � "th)

 0(⇣c) = jump

"c = "th +
⇣c

N1/3



Order Parameter = Participation Ratio 

PN =

* PN
i=1 "

2
i⇣PN

i=1 "i
⌘2

+
" > "c =) lim

N!1
PN = c > 0

" < "c =) lim
N!1

PN ⇠ 1/N

Consistent with non-analyticity of Entropy 

ORDER PARAMETER: PARTICIPATION RATIO (26) 

" < "th "th < " < "c " > "c

lim
N!1

PN 1/N 1/N c

T�1 = @S/@E > 0 < 0 < 0

Ensembles inequivalence 

Localization 

 0(⇣c) = jump

‘Pseudo-condensate’ 
micro 



Order Parameter = Participation Ratio 

PN =

* PN
i=1 "

2
i⇣PN

i=1 "i
⌘2

+
" > "c =) lim

N!1
PN = c > 0

" < "c =) lim
N!1

PN ⇠ 1/N

Consistent with non-analyticity of Entropy 

ORDER PARAMETER: PARTICIPATION RATIO (26) 

" < "th "th < " < "c " > "c

lim
N!1

PN 1/N 1/N c

T�1 = @S/@E > 0 < 0 < 0

Ergodicity breaking ? 

 0(⇣c) = jump

Localization ‘Pseudo-condensate’ 
micro 



" < "c =) lim
N!1

PN ⇠ 1/N

Consistent with non-analyticity of Entropy 

ORDER PARAMETER: PARTICIPATION RATIO (27) 

" < "th "th < " < "c " > "c

lim
N!1

PN 1/N 1/N c

T�1 = @S/@E > 0 < 0 < 0

Ergodicity breaking ? 

" > "c =) lim
N!1

PN = ("� "th)
2/"2

In the thermodynamic limit the two 
values coincide and the order 
parameter is continuous at the 

transition 

"c = "th +
⇣c

N1/3

Localization ‘Pseudo-condensate’ 



ORDER PARAMETER: PARTICIPATION RATIO (28) 

" < "th "th < " < "c " > "c

lim
N!1

PN 1/N 1/N c

T�1 = @S/@E > 0 < 0 < 0

Ergodicity breaking ? 

Localization 
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Merging at N=∞ into a mixed-order transition? 
Is there any known example of such a transition?  

‘Pseudo-condensate’ 



FINALLY SOME FIGURES! 

Entropy of the condensate  
As a function of size 

Marginal distribution on a 
single site (microcanonical) 
N=128: pseudo-condensate 

0 100 200 300

ε

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ρ(ε)

e
 =

 2
.0

0

2
.1

8

2
.3

5

2
.5

0

2
.7

0

3
.0

0

3
.4

1

"th = 2 "c = 4.2

(29) 

‘Condensate bump’ 
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A VERY WELL KNOWN MIXED ORDER TRANSITION: 
RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION 

(30) 

H = �
X

ijkl

Jijkl�i�j�k�l

#-interactions = N4

NX

i=1

�2
i = NP-spin model 

Jijkl = iid Gaussian variates hJ2i ⇠ N�3

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION 

IMPORTANT SIMILARITIES WITH DNLS 

✓ Locally unbounded continuous variables 
✓ Non-linear interactions 
✓ Global spherical constraint 

… NOT SHARED BY MODELS LIKE SHERRINGTON-KIRKPATRICK  

✓ Discrete spins 
✓ Linear interactions 



A VERY WELL KNOWN MIXED ORDER TRANSITION: 
RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION 

(31) 

H = �
X

ijkl

Jijkl�i�j�k�l

#-interactions = N4

NX

i=1

�2
i = NP-spin model 

Jijkl = iid Gaussian variates hJ2i ⇠ N�3

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION 

Order Parameter: OVERLAP  = 
Similarity among two configurations chosen 

at random in the equilibrium ensemble 

q ⇡ 0

q ⇡ 1

different 

similar 

q↵� =
1

N

NX

i=1

�↵
i �

�
i

Can be measured in 
simulations 

FIRST-ORDER FEATURES 

P (q) = m �(q � q0) + (1�m) �(q � q1)



ERGODIC 
all regions of 

phase space are 
equally available 

q0 q1
q1

q1
NON-ERGODIC 

Phase-space partitioning 
in disjoint ergodic 

components with self 
overlap q1 (mutual q0) 

P (q)
‘First-order like’ 

behaviour 

Ergodic  T > TK Glass T < TK 

q0 = 0 q0 = 0 q1 > 0 q1 > 0q0 = 0

T = TK 
Typically confs are different Typically confs are similar 

High Temperature Low Temperature 

q0

Ergodicity Breaking: Parisi’s order parameter 
(32) 



P (q)
‘First-order like’ 

behaviour 

Ergodic  T > TK Glass T < TK 

q0 = 0 q0 = 0 q1 > 0 q1 > 0q0 = 0

T = TK 
Typically confs are different Typically confs are similar 

Ergodicity Breaking: Parisi’s order parameter 
(33) 

…BUT STILL IS NOT A FIRST-ORDER TRANSITION 

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE TK 

- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE 
TRANSITION  

Z
dq P (q) q = (1�m) q1



P (q)
‘First-order like’ 

behaviour 

Ergodic  T > TK Glass T < TK 

q0 = 0 q0 = 0 q1 > 0 q1 > 0q0 = 0

T = TK 
Typically confs are different Typically confs are similar 

Ergodicity Breaking: Parisi’s order parameter 
(34) 

RANDOM FIRST-ORDER TRANSITION 
- NO LATENT HEAT AT THE CRITICAL TEMPERATURE TK 

- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE 
TRANSITION  

Z
dq P (q) q = (1�m) q1



localized
� < 0

delocalized
 � < 0 

delocalized
� > 0

"
=

E
/N

 
Subextensive 

Entropy 
SN ⇠

p
N

THE MAIN RESULT: MICROCANONICAL ENTROPY (35) 

1) Microcanonical and canonical ensembles are not equivalent 

3) Negative temperature ONLY in microcanonical ensemble (zero for N=∞). 

4) Localized solution has subextensive entropy (area law?, entaglement?) 

2) Localization is a ‘random first-order’ transition in the microcanonical ensemble 



Discrete Non-Linear Schrödinger Equation (DNLS) 

| i|2

i

PHENOMENON  
Condensate wavefunction 
localized at high enegies 
(numerical evidences) 

| i|2

i

1) WHICH KIND OF PHASE TRANSITION ? 

H = E < Ec
H = E > Ec

(36) 

2) WHICH STATISTICAL ENSEMBLE? 

3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion) 

4) IS DISORDER NECESSARY FOR LOCALIZATION? 

RANDOM FIRST (MIXED) ORDER! MICROCANONICAL 

NO! 

NO! 

i
@ i

@t
= � @H

@ ⇤
i

= �( i+1 +  i�1)� ⌫| i|2 i

Condensate wave-function (order parameter) h ̂i =  (xi, t) =  i(t)

H =
NX

i=1

( ⇤
i  i+1 +  i 

⇤
i+1) +

⌫

2

NX

i=1

| i|4
ENERGY (conserved) PARTICLES NUMBER (conserved) 

A =
NX

i=1

| i|2



Discrete Non-Linear Schrödinger Equation (DNLS) 

| i|2

i

PHENOMENON  
Condensate wavefunction 
localized at high enegies 
(numerical evidences) 

| i|2

i

1) WHICH KIND OF PHASE TRANSITION ? 

H = E < Ec
H = E > Ec

(37) 

2) WHICH STATISTICAL ENSEMBLE? 

3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion) 

4) IS DISORDER NECESSARY FOR LOCALIZATION? 

MICROCANONICAL 

NO! 

NO! 

QUITE OFTEN 
LOCALIZATION IS 

RELATED TO 
INTEGRABILITY  

‘Integrals of motion in the many-body localized phase’,  
Valentina Ros, M. Müller, A. Scardicchio,  
Nuclear Physics B 891, 420-465 (2015) 

They compute explicitly the N integrals of motion! 

H =
NX

i=1

( ⇤
i  i+1 +  i 

⇤
i+1) +

⌫

2

NX

i=1

| i|4
ENERGY (conserved) PARTICLES NUMBER (conserved) 

A =
NX

i=1

| i|2

RANDOM FIRST (MIXED) ORDER! 



Anderson Localization 
One-body localization due 

to quenched disorder 

Many-body Localization (MBL) 
Disorder + WEAK many-body interactions.  

OUR WORK 
(strong coupling regime) 

1) Localized phase is stable with respect to (weak) non-linearities. 

2) NON-LINEAR terms (many-body) are the source of localization! 
(outcome of the exact calculation) 

Discrete Non-Linear Schrödinger Equation (DNLS) (38) 

STATE of THE ART 

2) Role of disorder in presence of many-body interactions? 

3) Does localization survives without disorder? 

1) We do find localization in absence of disorder! (known numerically) 

H = J
X

hiji

ĉ†i ĉj +
NX

i=1

hi ĉ
†
i ĉi

H = J
X

hiji

ĉ†i ĉj +
NX

i=1

hi ĉ
†
i ĉi + k

NX

i=1

ĉ†i ĉi ĉ
†
i+1ĉi+1

Many-Body Localization is well understood pertubatively:  
In jergon: ‘a sort of quantum KAM theorem’ (B. Altshuler) 



OUR RESULT IS ROBUST WITH 
RESPECT TO DIMENSIONALITY 

H =
NX

i=1

( ⇤
i  i+1 +  i 

⇤
i+1) +

⌫

2

NX

i=1

| i|4
ENERGY (conserved) PARTICLES NUMBER (conserved) 

A =
NX

i=1

| i|2

⌦N (A,E) =

Z NY

i=1

d i �

 
A�

NX

i=1

| i|2
!
�

 
E �

NX

i=1

| i|4
!Everything relies upon 

neglecting the hopping terms 
at infinite temperature … 

very reasonable!  

(39) 

THE RESULT HOLDS IN ANY DIMENSION (consider 2d for example) 

 i,j  i+1,j i�1,j

H =
N=L2X

ij

�
 ⇤
ij i+1,j +  ij 

⇤
i+1,j +  ⇤

ij i,j+1 +  ij 
⇤
i,j+1

�
+
⌫

2

X

ij

| ij |4

Discrete Laplacian: 
- All information on dimensionality is here  
- It does not play any role in localization   

Entropy of the 
condensate 

S
micro

⇠ N1/2 = L



OUR RESULT IS ROBUST WITH 
RESPECT TO DIMENSIONALITY 

(40) 

THE RESULT HOLDS IN ANY DIMENSION (consider 2d for example) 

H =
N=L2X

ij

�
 ⇤
ij i+1,j +  ij 

⇤
i+1,j +  ⇤

ij i,j+1 +  ij 
⇤
i,j+1

�
+
⌫

2

X

ij

| ij |4

Entropy of the 
condensate 

S
micro

⇠ N1/2 = L

Exact results on Many-body Localization: severly tight to one-dimensional systems 
.  

SLOW DYNAMICS – ERGODICY BREAKING – LOCALIZATION – QUASI-INTEGRABILITY: 
Perturbative approaches with results strongly attached to D=1 

(consider for instance the Fermi-Pasta-Ulam problem) 
  

 QUANTUM DYNAMICS IN D=1  ~   CONFORMAL FIELD THEORIES IN D=2 (INTEGRABLE) 

✓ Localization in the strong coupling regime 
✓ Non-perturbative approach 
✓ Straighforward extension to D > 1  

By leaving the perturbative regime and 
exploiting the non-equivalence of ensembles 



Localization and Ensemble Inequivalence 
(in more ‘exotic’ systems, just an analogy) 

NON-LINEAR FIELD EQUATIONS  

LOCALIZED Schwarzschild SOLUTION (the Breather in the DNLS) 

LOCALIZED SOLUTION PROPERTIES 

- It adsorbs any extra amount of energy fed to the system, increasing its mass (like the Breather) 

- Subextensive growth of the Entropy (counting of microstates) 

V ⇠ N SBh ⇠ N2/3

Non-Linear Schrodinger 

S
micro

⇠ N1/2

Rµ⌫ � 1

2
gµ⌫R = 0

ds2 =

✓
1� 2MG

r

◆
dt2 � 1�

1� 2MG
r

�dr2 � r2d⌦

i
@ i

@t
= � @H

@ ⇤
i

= �( i+1 +  i�1)� ⌫| i|2 i

Discrete Non-Linear Schrödinger 

(41) 

- True curvature singularity in the Black Hole, mass singularity in the DNLS 



CONCLUSIONS - PERSPECTIVES (42) 

4) We clarified that the transition has a mixed first/second order, similarly to the ergodicity 
breaking transition in glasses (not spin glasses!): Random First-Order transition.   
Further investigations: localization in models of glasses (in progress). 

 2) Localization in the DNLS can only described within the Microcanonical Ensemble 

3) We put in evidence the existence, at large but finite N, of a delocalized (presumably non ergodic) state 
at negative temperature, the pseudo-condensate (relevant for experiments).  
Further investigations: multifractal wave function:  

 1) We provided the first fully consistent description of the localization transition in the Discrete Non-
Linear Schrödinger Equation (DNLS) 

I(q) = Nh| i|2qi

5) We clarified a mechanism for localization/ergodicity-breaking in the strong-coupling regime:  
- Not related to integrability (only two conserved quantities, perhaps emergent integrability?) 
-  Straighforwad extension to D > 1 (further investigations)     
-  DNLSE on dense random graph à  Talk Next Week Tuesday 30th at 11.15AM  

« Localization in the Discrete Non-Linear Schrodinger Equation and 
the geometric properties of the Microcanonical surface », 

C. Arezzo, F. Balducci, R. Piergallini, A. Scardicchio, C. Vanoni, 
arXiv:2102.10298 
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