Localization in the Discrete Non-Linear Schrödinger Equation: a 'Random First-Order' transition in the microcanonical ensemble

Giacomo Gradenigo
Gran Sasso Science Institute, L’Aquila

In collaboration with:
Stefano Iubini and Roberto Livi (Florence), Satya N. Majumdar (Paris).
Department of Mathematics and Statistics, Helsinki 24th - March - 2021

Summary

1) Large Deviations and Localization
2) Discrete Non-Linear Schrödinger Equation (DNLSE)
3) DNLSE: State of the art and the problem of ensembles
4) Localization mechanism
5) Finite-size effects, negative temperature, participation ratio
6) A mixed-order transition, analogies with glasses
7) Differences with Many-Body Localization
8) Role of dimensionality (none)
9) Condensates and black holes
10) Conclusions

The 'Linear Statistic' problem

Linear Statistic Problem: probability distribution of a sum of random variables

$$
P_{N}(M)=\int \prod_{i=1}^{N} d m_{i} p\left(m_{1}, \ldots, m_{N}\right) \delta\left(M-\sum_{i=1}^{N} m_{i}\right)
$$

Simple case: independent identically distributed random variables

$$
\begin{aligned}
& p\left(m_{1}, \ldots, m_{N}\right)=\prod_{i=1}^{N} p\left(m_{i}\right) \quad \begin{array}{ll}
\langle m\rangle<\infty & \text { Finite mean } \\
\left\langle m^{2}\right\rangle<\infty & \text { Finite variance }
\end{array} \\
& |M-N\langle m\rangle| \sim \sqrt{N} \quad \square \quad P_{N}(M)=\frac{1}{\sqrt{2 \pi \sigma N}} e^{-\frac{(X-N\langle m\rangle)^{2}}{2 \sigma^{2} N}} \\
& \text { Central Limit Theorem } \\
& |M-N\langle m\rangle| \sim N \quad \square P_{N}(M) \sim e_{\text {Rate function }}^{-N \underline{\mathcal{I}(m)}} m=M / N
\end{aligned}
$$

'Linear Statistic' and Large Deviations

Linear Statistic Problem: probability distribution of a sum of random variables

$$
P_{N}(M)=\int \prod_{i=1}^{N} d m_{i} p\left(m_{1}, \ldots, m_{N}\right) \delta\left(M-\sum_{i=1}^{N} m_{i}\right)
$$

Simple case: independent identically distributed random variables

$$
p\left(m_{1}, \ldots, m_{N}\right)=\prod_{i=1}^{N} p\left(m_{i}\right) \quad \begin{array}{ll}
\langle m\rangle<\infty & \text { Finite mean } \\
\left\langle m^{2}\right\rangle<\infty & \text { Finite variance }
\end{array}
$$

$\begin{gathered}\text { Fat tailed } \\ \text { distribution }\end{gathered} \quad e^{-m}<p(m)<\frac{1}{m^{2}} \quad \Longrightarrow$ Localization

$$
|M-N\langle m\rangle| \sim N \quad \square \quad P_{N}(M) \sim p(M)
$$

Large Deviations

‘Linear Statistic’ and Large Deviations

Mass transport model: stationary partition function

$$
\mathcal{Z}_{N}(M)=\int_{0}^{\infty} \prod_{i=1}^{N} d m_{i} \prod_{i=1}^{N} p\left(m_{i}\right) \delta\left(M-\sum_{i=1}^{N} m_{i}\right)
$$

Abstract

Fat tailed distribution

$$
e^{-m}<p(m)<\frac{1}{m^{2}}
$$

Localization
'Nature of the condensate in mass transport models',
Majumdar, Evans, Zia, PRL 94, 180601 (2006)

Partition function

$$
\mathcal{Z}_{N}(M) \sim p(M)
$$

Whole sum is taken up by a single variable

Participation Ratio

$$
Y_{2}(M)=\left\langle\frac{\sum_{i=1}^{n} m_{i}^{2}}{\left(\sum_{i=1}^{N} m_{i}\right)^{2}}\right\rangle
$$

$$
M<N\langle m\rangle \Longrightarrow Y_{2}(M) \sim 1 / N
$$

$$
M>N\langle m\rangle \Longrightarrow Y_{2}(M)=\mathcal{O}(1)
$$

Discrete Non-Linear Schrödinger Equation (DNLSE)

Inspiration 'A First-Order Dynamical Transition for a Driven Run-and-Tumble particle' (G. Gradenigo, S. N Majumdar, JSTAT, 2019)

$$
\mathcal{Z}_{N}\left(z=\frac{M-N\langle m\rangle}{N^{\alpha}}\right) \sim e^{-N \mathcal{I}(\langle m\rangle)-N^{1-\alpha} \mathcal{C}(z)} \quad \alpha<1
$$

Key observation: the precise characterization of the transition comes from subleading corrections to the rate function.

'Localization in Discrete Non-Linear Schrödinger Equation'

'Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation', G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, EPJ-E 44, 1-6 (2021)
'Localization transition in the discrete nonlinear Scrdinger equation: ensembles inequivalence and negative temperatures', G. Gradenigo, S. Iubini, R. Livi, S. N Majumdar, J. Stat. Mech. 023201 (2021)

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$\hat{H}=\int d^{3} x \hat{\psi}^{\dagger}(\mathbf{x})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\mathrm{ext}}\right] \hat{\psi}(\mathbf{x})+\frac{4 \pi \hbar^{2} a_{s}}{2 m} \int d^{3} x \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \hat{\psi}(\mathbf{x})$
'Discrete Breathers in Bose-Einstein Condensates', Franzosi, Livi, Oppo, Politi, Nonlinearity. 24, R89 (2011)
Second-quantization Hamiltonian of interacting bosons condensate

$$
V(\mathbf{x}-\mathbf{y})=\delta(\mathbf{x}-\mathbf{y}) \quad \text { Repulsive contact interactions }
$$

$$
\begin{aligned}
& \text { Bogoliubov approximation } \quad \hat{\psi}(\mathbf{x})=\Psi(\mathbf{x})+\hat{\varphi}(\mathbf{x}) \\
& \Psi(\mathbf{x})=\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Condensate wave-function (c-number) } \\
& \hat{\varphi}(\mathbf{x})=\hat{\psi}(\mathbf{x})-\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Deviation opeartor }
\end{aligned}
$$

Expand the Hamiltonian up to second order in powers of $\hat{\varphi}(\mathbf{x}), \hat{\varphi}^{\dagger}(\mathbf{x})$ (small quantum fluctuations around the mean-field solution)

$$
\hat{H}=K_{0}+\hat{K}_{1}+\hat{K}_{2}+\ldots \quad \hat{K}_{1}=\mathcal{O}(\hat{\varphi}) \quad \hat{K}_{2}=\mathcal{O}\left(\hat{\varphi}^{2}\right)
$$

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$\hat{K}_{1}=0 \Longleftrightarrow\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ext }}(\mathbf{x})\right] \Psi(\mathbf{x})-\frac{\nu}{2}|\Psi(\mathbf{x})|^{2} \Psi(\mathbf{x})=0$
Gross-Pitaevskii Equation: non-linear equation for the 'order parameter' of a quantum transition (semiclassical approximation)

$$
\begin{aligned}
& \text { Bogoliubov approximation } \quad \hat{\psi}(\mathbf{x})=\Psi(\mathbf{x})+\hat{\varphi}(\mathbf{x}) \\
& \Psi(\mathbf{x})=\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Condensate wave-function (c-number) } \\
& \hat{\varphi}(\mathbf{x})=\hat{\psi}(\mathbf{x})-\langle\hat{\psi}(\mathbf{x})\rangle \quad \text { Deviation opeartor }
\end{aligned}
$$

Expand the Hamiltonian up to second order in powers of $\hat{\varphi}(\mathbf{x}), \hat{\varphi}^{\dagger}(\mathbf{x})$ (small quantum fluctuations around the mean-field solution)

$$
\hat{H}=K_{0}+\hat{K}_{1}+\hat{K}_{2}+\ldots \quad \hat{K}_{1}=\mathcal{O}(\hat{\varphi}) \quad \hat{K}_{2}=\mathcal{O}\left(\hat{\varphi}^{2}\right)
$$

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$\hat{K}_{1}=0 \Longleftrightarrow\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ext }}(\mathbf{x})\right] \Psi(\mathbf{x})-\frac{\nu}{2}|\Psi(\mathbf{x})|^{2} \Psi(\mathbf{x})=0$

Gross-Pitaevskii Equation: non-linear equation for the 'order parameter' of a quantum transition (semiclassical approximation)

$$
V_{\mathrm{ext}}(\mathbf{x})=\underbrace{\frac{\hbar^{2} \omega^{2}}{4 E_{r}} \sin ^{2}\left(k_{\mathrm{L}} x\right)}_{\text {Periodic modulation - } \mathrm{x}}+\underbrace{\frac{m \Omega^{2}}{2}\left(y^{2}+z^{2}\right)}_{\text {Harmonic traps }(\mathrm{y}, \mathrm{z}) \text {-plane }} \quad \begin{gathered}
\text { Effectively on a } \\
\text { 1-dimensional lattice }
\end{gathered}
$$

Hamiltonian system on a lattice

$$
\mathcal{H}=\sum_{i=1}^{N} \Psi_{i}^{*} \Psi_{i+1}+\Psi_{i+1}^{*} \Psi_{i}+\frac{\nu}{2} \sum_{i=1}^{N}\left|\Psi_{i}\right|^{2}
$$

Canonical conjugate variables (classical)

$$
\left\{\Psi_{i}^{*}, \Psi_{j}\right\}=i \delta_{i j} / \hbar \quad i \dot{\Psi}_{i}=-\frac{\partial \mathcal{H}}{\partial \Psi_{i}^{*}}
$$

Poisson parentheses

Discrete Non-Linear Schrödinger Equation (DNLSE) A semiclassical Approximation

$\hat{K}_{1}=0 \Longleftrightarrow\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ext }}(\mathbf{x})\right] \Psi(\mathbf{x})-\frac{\nu}{2}|\Psi(\mathbf{x})|^{2} \Psi(\mathbf{x})=0$
Gross-Pitaevskii Equation: non-linear equation for the 'order parameter' of a quantum transition (semiclassical approximation)

EQUILIBRIUM STATISTICAL MECHANICS

Hamiltonian system on a lattice

$$
\mathcal{H}=\sum_{i=1}^{N} \Psi_{i}^{*} \Psi_{i+1}+\Psi_{i+1}^{*} \Psi_{i}+\frac{\nu}{2} \sum_{i=1}^{N}\left|\Psi_{i}\right|^{2}
$$

Canonical conjugate variables

$$
\left\{\Psi_{i}^{*}, \Psi_{j}\right\}=i \delta_{i j} / \hbar \quad i \dot{\Psi}_{i}=-\frac{\partial \mathcal{H}}{\partial \Psi_{i}^{*}}
$$

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\quad\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$
$i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}$

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4} \quad A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}$

1) WHICH KIND OF PHASE TRANSITION?
2) WHICH STATISTICAL ENSEMBLE?
3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion)
4) IS DISORDER NECESSARY FOR LOCALIZATION?

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\quad\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$
$i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}$

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}$
PARTICLES NUMBER (conserved)
$A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}$

PHENOMENON Condensate wavefunction localized at high enegies (numerical evidences)

The 'Fundamental Ensemble' : MICROCANONICAL
Microcanonical
Partition function

$$
\Omega_{N}(A, E)=\int \prod_{i=1}^{N} d \psi_{i} \delta\left(A-\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}\right) \underbrace{\delta\left(E-\mathcal{H}\left[\psi_{i}^{*}, \psi_{i}\right]\right)}_{\text {Particle number conservation }}
$$

DNLSE theory: state of the art

'Statistical Mechanics of a Discrete Non-Linear System', K.O. Rasmussen, T. Cretegny, P.G. Kevridis, N. Gronbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)

Microcanonical $\longrightarrow\left\{\begin{array}{l}\text { Grand Canonical } \mathcal{Z}_{N}(\mu, \beta)=\int_{0}^{\infty} d A d E e^{-\beta E-\mu A} \Omega_{N}(A, E) \\ \text { Grand Canonical: exact solution with trasfer matrix techniques! }\end{array}\right.$

Transition line at infinite temperature: $\beta=0$

$$
\varepsilon=2 a^{2}
$$

PROBLEM

Many numerical evidences that the localized phase has negative temperature, $\mathrm{T}<\mathbf{0}$
'Discrete Breathers and Negative-Temperature States', S. Iubini, R. Franzosi, R. Livi, G.-L. Oppo, A. Politi, New J. Phys. 15, 023032 (2013)

HOW CAN $\beta<0$ BE CONSISTENT WITH $e^{-\beta \mathcal{H}}$

Discrete Non-Linear Schrödinger Equation (DNLSE)

Condensate wave-function (order parameter) $\quad\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$

$$
i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}
$$

$$
\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4} \quad \text { PARTICLES NUMBER (conserved) } \quad A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}
$$

ONLY THE MICROCANONICAL IS CORRECT: GO FOR IT!

Neglect hopping terms (random-phase argument)

$$
\Omega_{N}(A, E)=\int \prod_{i=1}^{N} d \psi_{i} \delta\left(A-\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}\right) \delta\left(E-\sum_{i=1}^{N}\left|\psi_{i}\right|^{4}\right)
$$

Particle number conservation Energy conservation

ENSEMBLES IN-EQUIVALENCE

$\frac{\mathcal{Z}_{N}(\mu, \beta)}{\text { Grand-Canonical }}=\int_{0}^{\infty} d A d E e^{-\beta E-\mu A} \underbrace{\Omega_{N}(A, E)}_{\text {Micro-Canonical }}=[z(\mu, \beta)]^{N}$

$$
\Omega_{N}(A, E)=\int_{\mu_{0}+i \infty}^{\mu_{0}-i \infty} d \mu \int_{\beta_{0}-i \infty}^{\beta_{0}-i \infty} d \beta e^{\mu A+\beta E+N \log z(\mu, \beta)} \quad \begin{gathered}
\text { Inverse Laplace } \\
\text { Transform }
\end{gathered}
$$

ENSEMBLES are equivalent when saddle-points equations have real solutions

Can I find real $\boldsymbol{\beta}$ and $\boldsymbol{\mu}$ for ANY choice of E and A ?

$$
\begin{aligned}
& \frac{E}{N}=-\frac{\partial}{\partial \beta} \log [z(\mu, \beta)] \\
& \frac{A}{N}=-\frac{\partial}{\partial \mu} \log [z(\mu, \beta)]
\end{aligned}
$$

DNLSE: For $\boldsymbol{E}>\boldsymbol{E}_{\boldsymbol{t} h}$ there is no $\boldsymbol{\beta}$!

ENSEMBLES IN-EQUIVALENCE

$$
\Omega_{N}(A, E)=\int_{\mu_{0}+i \infty}^{\mu_{0}-i \infty} d \mu \int_{\beta_{0}-i \infty}^{\beta_{0}-i \infty} d \beta e^{\mu A+\beta E+N \log z(\mu, \beta)} \quad \begin{gathered}
\text { Inverse Laplace } \\
\text { Transform }
\end{gathered}
$$

ENSEMBLES are equivalent when saddle-points equations have real solutions

Can I find real β and μ for ANY choice of E and A ?

$$
\frac{E}{N}=-\frac{\partial}{\partial \beta} \log [z(\mu, \beta)]
$$

$$
z(\mu, \beta)=\frac{\mu \sqrt{\pi}}{2 \sqrt{\beta}} \exp \left(\frac{\mu^{2}}{4 \beta}\right) \operatorname{Erfc}\left(\frac{\mu}{2 \sqrt{\beta}}\right)
$$

$$
\begin{aligned}
& \frac{\mathcal{Z}_{N}(\mu, \beta)}{\text { Grand-Canonical }}=\int_{0}^{\infty} d A d E e^{-\beta E-\mu A} \underbrace{\Omega_{N}(A, E)}_{\text {Micro-Canonical }}=[z(\mu, \beta)]^{N} \\
& \text { Laplace Transform }
\end{aligned}
$$

SKETCHY MECHANISM OF LOCALIZATION

$$
\begin{gathered}
\frac{\mathcal{Z}_{N}(\mu, \beta)}{\text { Grand-Canonical }}=\int_{0}^{\infty} d A d E e^{-\beta E-\mu A} \underbrace{\Omega_{N}(A, E)}_{\text {Laplace Transform }}=[z(\mu, \beta)]^{N} \\
\Omega_{N}(A, E)=\int_{\mu_{0}+i \infty}^{\mu_{0}-i \infty} d \mu \int_{\beta_{0}-i \infty}^{\beta_{0}-i \infty} d \beta e^{\mu A+\beta E+N \log z(\mu, \beta)} \quad \begin{array}{c}
\text { Inverse Laplace } \\
\text { Transform }
\end{array}
\end{gathered}
$$

ENSEMBLES are equivalent when saddle-points equations have real solutions

$$
E>E_{\mathrm{th}}
$$

1) Cannot reach such energy by equal sharing among d.o.f.
2) The amount $E_{\text {th }}$ is identically distributed among the degrees of freedom (infinite temperature background)
3) Excess energy is put into the localized phase

THE LARGE DEVIATIONS APPROACH

Microcanonical Ensemble

$$
\Omega_{N}(A, E)=\int \prod_{i=1}^{N} d \psi_{i} \delta\left(A-\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}\right) \delta\left(E-\sum_{i=1}^{N}\left|\psi_{i}\right|^{4}\right)
$$

Release constraint on 'particle number'

$$
\Omega_{N}(\mu, E)=\int \prod_{i=1}^{n} d \psi_{i} e^{-\mu \sum_{i=1}^{N}\left|\psi_{i}\right|^{2}} \delta\left(E-\sum_{i=1}^{N}\left|\psi_{i}\right|^{4}\right)
$$

$$
\underset{\text { variables }}{\underset{\text { vhange of }}{\text { Cha }}} \quad \Omega_{N}(\mu, E) \approx \int \prod_{i=1}^{n}\left[d \varepsilon_{i} \frac{e^{-\mu \sqrt{\varepsilon_{i}}}}{\sqrt{\varepsilon_{i}}}\right] \delta\left(E-\sum_{i=1}^{N} \varepsilon_{i}\right)
$$

1) $\psi=r e^{i \phi}$

Partition
Function

Probability distribution of fat tailed variables sum

$$
e^{-\varepsilon_{i}}<\frac{e^{-\mu \sqrt{\varepsilon_{i}}}}{\sqrt{\varepsilon_{i}}}<\frac{1}{\varepsilon_{i}^{2}} \quad \square \text { Localization } \quad E>N\langle\varepsilon\rangle_{\mu}=E_{\mathrm{th}}
$$

Slow decay of the energy per site probability distribution function

MATCHING ARGUMENT FOR LOCALIZATION

$\underset{\text { regime }}{\text { Gausian }} \quad E-E_{t h} \sim \sqrt{N}$
$\Omega_{N}(A, E) \approx e^{-\frac{\left(E-E_{t h}\right)^{2}}{2 \sigma^{2} N}}$

Extreme large
deviations $\quad E-E_{t h} \sim N$
$\Omega_{N}(A, E) \approx e^{-\sqrt{E-E_{t h}}}$

Matching regime (you set the scale)

$$
\frac{E-E_{t h}}{N^{2 / 3}}=\zeta \sim 1
$$

Zoom in the complex plane around the origin to propertly account for the cut contribution
$\int_{\beta_{0}-i \infty}^{\beta_{0}+i \infty} d \beta e^{\beta E+N \underbrace{N \log [z(\beta, \mu)]}}$
Expand this guy at the origin

$$
\hat{\beta}=N^{1 / 3} \beta \sim 1
$$

MATCHING ARGUMENT FOR LOCALIZATION

$\underset{\text { regime }}{\text { Gaussian }} \quad E-E_{t h} \sim \sqrt{N}$
$\Omega_{N}(A, E) \approx e^{-\frac{\left(E-E_{t h}\right)^{2}}{2 \sigma^{2} N}}$

Extreme large deviations $\quad E-E_{t h} \sim N$
$\Omega_{N}(A, E) \approx e^{-\sqrt{E-E_{t h}}}$

Matching regime (you set the scale) $\quad \frac{E-E_{t h}}{N^{2 / 3}}=\zeta \sim 1 \quad \hat{\beta}=N^{1 / 3} \beta \sim 1$

$$
\int_{\beta_{0}-i \infty}^{\beta_{0}+i \infty} d \beta e^{\beta E+N \log [z(\beta, \mu)]}=\frac{1}{\sigma \sqrt{2 \pi N}} \exp \left\{-\frac{\left(E-E_{t h}\right)^{2}}{2 \sigma^{2} N}\right\}+\mathcal{C}(E)
$$

Non-analiticity at the cut

MATCHING ARGUMENT FOR LOCALIZATION

$\underset{\text { regime }}{\text { Gaussian }} \quad E-E_{t h} \sim \sqrt{N}$
$\Omega_{N}(A, E) \approx e^{-\frac{\left(E-E_{t h}\right)^{2}}{2 \sigma^{2} N}}$

Extreme large deviations $\quad E-E_{t h} \sim N$
$\Omega_{N}(A, E) \approx e^{-\sqrt{E-E_{t h}}}$

Matching regime (you set the scale) $\quad \frac{E-E_{t h}}{N^{2 / 3}}=\zeta \sim 1 \quad \hat{\beta}=N^{1 / 3} \beta \sim 1$

$$
\Omega_{N}(A, E) \approx e^{N[1+\log (\pi a)]}\left[e^{-N^{1 / 3} \zeta^{2} /\left(2 \sigma^{2}\right)}+e^{-N^{1 / 3} \chi(\zeta)}\right]
$$

$$
\Omega_{N}(A, E) \sim \exp \left\{N[1+\log (\pi a)]-N^{1 / 3} \Psi(\zeta)\right\}
$$

Non-analiticity at the cut

$$
\Psi(\zeta)=\min \left\{\zeta^{2} /\left(2 \sigma^{2}\right), \chi(\zeta)\right\} \longrightarrow \frac{\zeta^{2}}{2 \sigma^{2}}=\chi(\zeta) \quad \Longrightarrow \quad \zeta_{c}=\frac{E_{c}-E_{t h}}{N^{2 / 3}}
$$

MATCHING ARGUMENT FOR LOCALIZATION

Gaussian
$\underset{\text { regime }}{ } \quad E-E_{t h} \sim \sqrt{N}$
$\Omega_{N}(A, E) \approx e^{-\frac{\left(E-E_{t h}\right)^{2}}{2 \sigma^{2} N}}$

Extreme large
$\underset{\text { deviations }}{ } \quad E-E_{t h} \sim N$
$\Omega_{N}(A, E) \approx e^{-\sqrt{E-E_{t h}}}$

Matching regime (you set the scale) $\quad \frac{E-E_{t h}}{N^{2 / 3}}=\zeta \sim 1 \quad \hat{\beta}=N^{1 / 3} \beta \sim 1$

$$
\begin{aligned}
& \Omega_{N}(A, E) \sim \exp \left\{N[1+\log (\pi a)]-N^{1 / 3} \Psi(\zeta)\right\} \\
& \Psi(\zeta)=\min \left\{\zeta^{2} /\left(2 \sigma^{2}\right), \chi(\zeta)\right\}
\end{aligned}
$$

$$
\zeta \gg 1 \Longrightarrow \chi(\zeta)=\zeta^{1 / 2} \sqrt{\frac{2}{\langle\varepsilon\rangle}}-\frac{\sigma^{2}}{4 \varepsilon} \frac{1}{\zeta}+\mathcal{O}\left(\zeta^{-5 / 2}\right) \quad e^{-\varepsilon_{i}}<\frac{e^{-\mu \sqrt{\varepsilon_{i}}}}{\sqrt{\varepsilon_{i}}}<\frac{1}{\varepsilon_{i}^{2}}
$$

THE MAIN RESULT: MICROCANONICAL ENTROPY

Microcanonical Entropy

$$
S_{N}(A, E)=\mathrm{k} \log \left[\Omega_{N}(A, E)\right]
$$

The first, the one ... and the ONLY

$$
E>E_{\mathrm{th}}
$$

CONDENSATE ENTROPY (SUBEXTENSIVE)

$$
S_{N}(A, E)=\Sigma_{0}(A)+\overbrace{\Sigma_{1}(E, A)}
$$

Background Entropy (energy indipendent)

$$
\Sigma_{0}(A)=N[1+\log (\pi a)]
$$

THE MAIN RESULT: MICROCANONICAL ENTROPY

Microcanonical Entropy

$$
S_{N}(A, E)=\mathrm{k} \log \left[\Omega_{N}(A, E)\right]
$$

The first, the one ... and the ONLY

Three regimes

$$
\begin{aligned}
\Sigma_{1}(E, A)= & \left\{\begin{array}{lrl}
-\frac{N}{2 \sigma^{2}}\left(\varepsilon-\varepsilon_{\mathrm{th}}\right)^{2} & \text { Gaussian } & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1 / \sqrt{N} \\
-N^{1 / 3} \Psi(\zeta) & \text { Matching } & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1 / N^{1 / 3} \\
-N^{1 / 2} \sqrt{\varepsilon-\varepsilon_{\mathrm{th}}} & \text { Large Deviations } & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1
\end{array}\right. \\
& \varepsilon_{\mathrm{th}}=2 a^{2} \quad \zeta=N^{1 / 3}\left(\varepsilon-\varepsilon_{\mathrm{th}}\right)
\end{aligned}
$$

THE MAIN RESULT: MICROCANONICAL ENTROPY

$$
\begin{gathered}
\Psi^{\prime}\left(\zeta_{c}\right)=\text { jump } \\
\zeta_{c}=N^{1 / 3}\left(\varepsilon_{c}-\varepsilon_{t h}\right) \\
\varepsilon_{c}=\varepsilon_{t h}+\frac{\zeta_{c}}{N^{1 / 3}}
\end{gathered}
$$

Finite-size correction to the critical line

$$
\begin{aligned}
& \Sigma_{1}(E, A)= \begin{array}{ll}
-\frac{N}{2 \sigma^{2}}\left(\varepsilon-\varepsilon_{\mathrm{th}}\right)^{2} & \text { Gaussian } \\
\underset{\substack{\text { CONDENSATE } \\
\text { ENTROPY }}}{-N^{1 / 3} \Psi(\zeta)} & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1 / \sqrt{N} \\
-N^{1 / 2} \sqrt{\varepsilon-\varepsilon_{\mathrm{th}}} & \text { Matching } \\
\text { Large Deviations } & \varepsilon-\varepsilon_{\mathrm{th}} \sim 1 / N^{1 / 3} \\
& \varepsilon-\varepsilon_{\mathrm{th}} \sim 1
\end{array} \\
& \varepsilon_{\mathrm{th}}=2 a^{2} \quad \zeta=N^{1 / 3}\left(\varepsilon-\varepsilon_{\mathrm{th}}\right)
\end{aligned}
$$

NEGATIVE TEMPERATURE - SUBEXTENSIVE ENTROPY

PROBING THE NEGATIVE TEMPEATURE

$\varepsilon_{\mathrm{th}}<\varepsilon<\varepsilon_{c}=\quad$ Uninteresting ?
Not really...
$\varepsilon>\varepsilon_{\mathrm{th}} \Longrightarrow \frac{\partial S}{\partial E}=\frac{1}{T}<0$

NEGATIVE TEMPERATURE

Discrete Non-Linear Schrödinger
Equation coupled at the boundaries with reservoirs at different temperature
'A chain, A bath, A sink and a Wall',
S. Iubini, S. Lepri, R. Livi, G.-L. Oppo, A. Politi, Entropy (2017)

ORDER PARAMETER: PARTICIPATION RATIO

$$
\begin{gathered}
\Psi^{\prime}\left(\zeta_{c}\right)=\text { jump } \\
\zeta_{c}=N^{1 / 3}\left(\varepsilon_{c}-\varepsilon_{t h}\right) \\
\varepsilon_{c}=\varepsilon_{t h}+\frac{\zeta_{c}}{N^{1 / 3}}
\end{gathered}
$$

Finite-size correction to the critical line

ORDER PARAMETER: PARTICIPATION RATIO

$$
\Psi^{\prime}\left(\zeta_{c}\right)=\mathrm{jump}
$$

Order Parameter $=$ Participation Ratio

$$
\begin{aligned}
& \mathcal{P}_{N}=\left\langle\frac{\sum_{i=1}^{N} \varepsilon_{i}^{2}}{\left(\sum_{i=1}^{N} \varepsilon_{i}\right)^{2}}\right\rangle_{\text {micro }}
\end{aligned}
$$

ORDER PARAMETER: PARTICIPATION RATIO

$$
\Psi^{\prime}\left(\zeta_{c}\right)=\mathrm{jump}
$$

Order Parameter $=$ Participation Ratio

$$
\mathcal{P}_{N}=\left\langle\frac{\sum_{i=1}^{N} \varepsilon_{i}^{2}}{\left(\sum_{i=1}^{N} \varepsilon_{i}\right)^{2}}\right\rangle_{\text {micro }}
$$

Consistent with non-analyticity of Entropy

$$
\begin{aligned}
& \varepsilon>\varepsilon_{c} \quad \Longrightarrow \lim _{N \rightarrow \infty} \mathcal{P}_{N}=c>0 \\
& \varepsilon<\varepsilon_{c} \quad \Longrightarrow \quad \lim _{N \rightarrow \infty} \mathcal{P}_{N} \sim 1 / N
\end{aligned}
$$

(Pseudo-condensat	Localization
	$\varepsilon<\varepsilon_{t h}$	$\varepsilon_{t h}<\varepsilon<\varepsilon_{c}$	$\varepsilon>\varepsilon_{c}$
$\lim _{N \rightarrow \infty} \mathcal{P}_{N}$	$1 / N$	$1 / N$	c
$T^{-1}=\partial S / \partial E$	>0	<0	<0

Ergodicity breaking?

ORDER PARAMETER: PARTICIPATION RATIO

$$
\varepsilon_{c}=\varepsilon_{t h}+\frac{\zeta_{c}}{N^{1 / 3}}
$$

Consistent with non-analyticity of Entropy

$$
\begin{aligned}
\varepsilon>\varepsilon_{c} & \Longrightarrow \lim _{N \rightarrow \infty} \mathcal{P}_{N}=\left(\varepsilon-\varepsilon_{t h}\right)^{2} / \varepsilon^{2} \\
\varepsilon<\varepsilon_{c} & \Longrightarrow \lim _{N \rightarrow \infty} \mathcal{P}_{N} \sim 1 / N
\end{aligned}
$$ values coincide and the order parameter is continuous at the

Ergodicity breaking ?

ORDER PARAMETER: PARTICIPATION RATIO

Merging at $\mathbf{N}=\infty$ into a mixed-order transition?
Is there any known example of such a transition?

FINALLY SOME FIGURES!

Entropy of the condensate As a function of size

A VERY WELL KNOWN MIXED ORDER TRANSITION:

 RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION$$
\begin{aligned}
\text { P-spin model } \quad \mathcal{H} & =-\sum_{i j k l} J_{i j k l} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l} \quad \sum_{i=1}^{N} \sigma_{i}^{2}=N \\
\text { \#-interactions } & =N^{4} \quad J_{i j k l}=\text { iid Gaussian variates } \quad\left\langle J^{2}\right\rangle \sim N^{-3}
\end{aligned}
$$

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

IMPORTANT SIMILARITIES WITH DNLS

\checkmark Locally unbounded continuous variables
\checkmark Non-linear interactions
\checkmark Global spherical constraint
... NOT SHARED BY MODELS LIKE SHERRINGTON-KIRKPATRICK
\checkmark Discrete spins
\checkmark Linear interactions

A VERY WELL KNOWN MIXED ORDER TRANSITION: RANDOM FIRST-ORDER or IDEAL GLASS TRANSITION

$$
\begin{aligned}
\text { P-spin model } \quad \mathcal{H} & =-\sum_{i j k l} J_{i j k l} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l} \quad \sum_{i=1}^{N} \sigma_{i}^{2}=N \\
\text { \#-interactions } & =N^{4} \quad J_{i j k l}=\text { iid Gaussian variates } \quad\left\langle J^{2}\right\rangle \sim N^{-3}
\end{aligned}
$$

GLASS TRANSITION = ERGODICITY BREAKING TRANSITION

FIRST-ORDER FEATURES

Order Parameter: OVERLAP $=$
Similarity among two configurations chosen at random in the equilibrium ensemble

$$
\begin{aligned}
& q^{\alpha \beta}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{\alpha} \sigma_{i}^{\beta} \quad \begin{array}{l}
q \approx 0 \text { different } \\
q \approx 1 \text { similar }
\end{array} \\
& P(q)=m \delta\left(q-q_{0}\right)+(1-m) \delta\left(q-q_{1}\right) \\
& \text { Can be measured in } \\
& \text { simulations }
\end{aligned}
$$

Ergodicity Breaking: Parisi's order parameter

High Temperature

Low Temperature

$P(q)$
'First-order like' behaviour

Ergodic $\mathbf{T}>\mathbf{T}_{\mathbf{K}}$
Typically confs are different

$\mathbf{T}=\mathbf{T}_{\mathbf{K}}$

Glass $\mathbf{T}<\mathbf{T}_{\mathbf{K}}$

Ergodicity Breaking: Parisi's order parameter

...BUT STILL IS NOT A FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE TK $_{K}$
- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE TRANSITION

$$
\int d q P(q) q=(1-m) q_{1}
$$

Ergodic $\mathbf{T}>\mathbf{T}_{\mathbf{K}}$ Typically confs are different

$$
\mathbf{T}=\mathbf{T}_{\mathbf{K}}
$$

Glass $\mathbf{T}<\mathbf{T}_{\mathbf{K}}$

Ergodicity Breaking: Parisi's order parameter

RANDOM FIRST-ORDER TRANSITION

- NO LATENT HEAT AT THE CRITICAL TEMPERATURE T_{K}
- AVERAGE VALUE OF ORDER PARAMETER CONTINUOUS AT THE TRANSITION

$$
\int d q P(q) q=(1-m) q_{1}
$$

Ergodic $\mathbf{T}>\mathbf{T}_{\mathbf{K}}$ Typically confs are different

$\mathbf{T}=\mathbf{T}_{\mathrm{K}}$

Glass $\mathbf{T}<\mathbf{T}_{\mathbf{K}}$

THE MAIN RESULT: MICROCANONICAL ENTROPY

1) Microcanonical and canonical ensembles are not equivalent
2) Localization is a 'random first-order' transition in the microcanonical ensemble
3) Negative temperature ONLY in microcanonical ensemble (zero for $\mathbf{N}=\infty$).
4) Localized solution has subextensive entropy (area law?, entaglement?)

Discrete Non-Linear Schrödinger Equation (DNLS)

Condensate wave-function (order parameter) $\quad\langle\hat{\psi}\rangle=\psi\left(x_{i}, t\right)=\psi_{i}(t)$
$i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}$

ENERGY (conserved)
$\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}$

PARTICLES NUMBER (conserved)
$A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}$

PHENOMENON $\quad\left|\psi_{i}\right|^{2} \uparrow \quad \mathcal{H}=E<E_{c} \quad\left|\psi_{i}\right|^{2} \uparrow \quad \mathcal{H}=E>E_{c}$ Condensate wavefunction localized at high enegies (numerical evidences)

RANDOM FIRST (MIXED) ORDER!

1) WHICH KIND OF PHASE TRANSITION?

MICROCANONICAL
2) WHICH STATISTICAL ENSEMBLE?
3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion) NO!
4) IS DISORDER NECESSARY FOR LOCALIZATION? NO!

Discrete Non-Linear Schrödinger Equation (DNLS)

QUITE OFTEN
LOCALIZATION IS
RELATED TO
INTEGRABILITY
'Integrals of motion in the many-body localized phase', Valentina Ros, M. Müller, A. Scardicchio, Nuclear Physics B 891, 420-465 (2015)

They compute explicitly the N integrals of motion!

$$
\begin{array}{cc}
\text { ENERGY (conserved) } & \text { PARTICLES NUMBER (conserved) } \\
\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4} & A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}
\end{array}
$$

RANDOM FIRST (MIXED) ORDER!

1) WHICH KIND OF PHASE TRANSITION?

MICROCANONICAL
2) WHICH STATISTICAL ENSEMBLE?
3) LOCALIZATION COMES FROM INTEGRABILITY? (N integrals of motion) NO!
4) IS DISORDER NECESSARY FOR LOCALIZATION? NO!

Discrete Non-Linear Schrödinger Equation (DNLS)

Anderson Localization
One-body localization due to quenched disorder
$\mathcal{H}=J \sum_{\langle i j\rangle} \hat{c}_{i}^{\dagger} \hat{c}_{j}+\sum_{i=1}^{N} h_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}$

Many-body Localization (MBL) Disorder + WEAK many-body interactions.

$$
\mathcal{H}=J \sum_{\langle i j\rangle} \hat{c}_{i}^{\dagger} \hat{c}_{j}+\sum_{i=1}^{N} h_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}+k \sum_{i=1}^{N} \hat{c}_{i}^{\dagger} \hat{c}_{i} \hat{c}_{i+1}^{\dagger} \hat{c}_{i+1}
$$

STATE of THE ART 1) Localized phase is stable with respect to (weak) non-linearities.
2) Role of disorder in presence of many-body interactions?
3) Does localization survives without disorder?

Many-Body Localization is well understood pertubatively:
In jergon: 'a sort of quantum KAM theorem'(B. Altshuler)

OUR WORK

 (strong coupling regime)1) We do find localization in absence of disorder! (known numerically)
2) NON-LINEAR terms (many-body) are the source of localization! (outcome of the exact calculation)

OUR RESULT IS ROBUST WITH RESPECT TO DIMENSIONALITY

ENERGY (conserved)

$$
\mathcal{H}=\sum_{i=1}^{N}\left(\psi_{i}^{*} \psi_{i+1}+\psi_{i} \psi_{i+1}^{*}\right)+\frac{\nu}{2} \sum_{i=1}^{N}\left|\psi_{i}\right|^{4}
$$

PARTICLES NUMBER (conserved)

$$
A=\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}
$$

Everything relies upon neglecting the hopping terms at infinite temperature ... very reasonable!

$$
\Omega_{N}(A, E)=\int \prod_{i=1}^{N} d \psi_{i} \delta\left(A-\sum_{i=1}^{N}\left|\psi_{i}\right|^{2}\right) \delta\left(E-\sum_{i=1}^{N}\left|\psi_{i}\right|^{4}\right)
$$

THE RESULT HOLDS IN ANY DIMENSION (consider 2d for example)

$\psi_{i-1, j}$
$\psi_{i, j}$
:---:
Discrete Laplacian: - All information on dimensionality is here - It does not play any role in localization
:---:
condensate

$S_{\text {micro }} \sim N^{1 / 2}=L$

OUR RESULT IS ROBUST WITH RESPECT TO DIMENSIONALITY

Exact results on Many-body Localization: severly tight to one-dimensional systems
SLOW DYNAMICS - ERGODICY BREAKING - LOCALIZATION - QUASI-INTEGRABILITY: Perturbative approaches with results strongly attached to $\mathrm{D}=1$ (consider for instance the Fermi-Pasta-Ulam problem)

QUANTUM DYNAMICS IN $\mathbf{D}=1 \sim$ CONFORMAL FIELD THEORIES IN $\mathbf{D}=\mathbf{2}$ (INTEGRABLE)

By leaving the perturbative regime and exploiting the non-equivalence of ensembles

THE RESULT HOLDS IN ANY DIMENSION (consider 2d for example)

$$
\begin{gathered}
\begin{array}{c}
\boldsymbol{L} \text { Localization in the strong coupling regime } \\
\boldsymbol{\Omega} \text { Non-perturbative approach } \\
\boldsymbol{\Omega} \text { Straighforward extension to } \boldsymbol{D}>\boldsymbol{1}
\end{array} \\
\mathcal{H}=\sum_{i j}^{N=L^{2}}\left(\psi_{i j}^{*} \psi_{i+1, j}+\psi_{i j} \psi_{i+1, j}^{*}+\psi_{i j}^{*} \psi_{i, j+1}+\psi_{i j} \psi_{i, j+1}^{*}\right)+\frac{\nu}{2} \sum_{i j}\left|\psi_{i j}\right|^{4}
\end{gathered}
$$

Localization and Ensemble Inequivalence (in more 'exotic' systems, just an analogy)

NON-LINEAR FIELD EQUATIONS

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0
$$

Discrete Non-Linear Schrödinger

$$
i \frac{\partial \psi_{i}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial \psi_{i}^{*}}=-\left(\psi_{i+1}+\psi_{i-1}\right)-\nu\left|\psi_{i}\right|^{2} \psi_{i}
$$

CONCLUSIONS - PERSPECTIVES

1) We provided the first fully consistent description of the localization transition in the Discrete NonLinear Schrödinger Equation (DNLS)
2) Localization in the DNLS can only described within the Microcanonical Ensemble
3) We put in evidence the existence, at large but finite N , of a delocalized (presumably non ergodic) state at negative temperature, the pseudo-condensate (relevant for experiments).
Further investigations: multifractal wave function: $\left.I(q)=\left.N\langle | \psi_{i}\right|^{2 q}\right\rangle$
4) We clarified that the transition has a mixed first/second order, similarly to the ergodicity breaking transition in glasses (not spin glasses!): Random First-Order transition.
Further investigations: localization in models of glasses (in progress).
5) We clarified a mechanism for localization/ergodicity-breaking in the strong-coupling regime:

- Not related to integrability (only two conserved quantities, perhaps emergent integrability?)
- Straighforwad extension to D >1 (further investigations)
- DNLSE on dense random graph \rightarrow Talk Next Week Tuesday 30th at 11.15AM
«Localization in the Discrete Non-Linear Schrodinger Equation and the geometric properties of the Microcanonical surface»,
C. Arezzo, F. Balducci, R. Piergallini, A. Scardicchio, C. Vanoni, arXiv:2102.10298

THANKS FOR YOUR ATTENTION

