Cry Comm

HORIZON 2020

European Commission

Grant agreement ID: 899558

aCryComm: attojoule 🕃 Cryogenic 🗱 Communication 🖘

Matteo Cherchi VTT Technical Research Centre of Finland matteo.cherchi@vtt.fi

Quantum Science and Technology seminar

Friday 26 March 2021

Quantum Technology Finland

Cry Comm

Outline

- aCryComm in a nutshell
- Our vision
- SFQ electronics
- Our proposed solutions
- Cryogenic OE conversion
- Cryogenic EO conversion
- Cryogenic packaging
- Conclusion

Our vision

Supercomputer today

- Air conditioned room ≈20°C, liquid cooling of processors;
- Up to 200 MW overall power consumption: need a dedicated power plant

Supercomputer in 5 years?

Introduce superconducting <u>classical</u> co-processor units high speed + energy efficiency

Supercomputer in 10 years?

Introduce superconducting <u>quantum</u> co-processor units to exploit quantum advantage

Case 1: HPC power consumption

- Graphics Processing Units (GPUs) play a key role in modern High Performance Computers (HPC) thanks to their superior handling of matrix and vector operations
- GPUs have helped improving the overall efficiency compared to CPU-only architectures
- Still, GPUs play a major role in power consumption of modern HPC architectures

Case 2: Scaling-up quantum computers

(source: Google https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html)

The operating environment and control systems need a quantum leap, too!

The state-of-art cryostat (Bluefors Oy) with control RF cabling (220 coaxial cables).

SFQ electronics

Superconducting electronics

Josephson junction

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Up to ≈ 1M Josephson Junctions thanks to multi-metal-layer fabrication processes

Basic Facts

- SFQ stand for "Single flux quantum"
- Can be used to fabricate similar circuits as classical logic
- Based on driving pulses in Josephson junction logical circuit

- Figures of Merit:
 - Parameters depend on the parameters of Josephson junctions
 - Voltages usually **few millivolts**
 - Current from few **micro to milli amperes**
 - Frequencies from tens to hundreds of gigahertzs
 - Power consumption depends on design, ultimately limited by the Josephson junctions (typically small fractions of attoJoules per junction per pulse)

Basic Principles

- In SFQ the Josephson junctions are biased near their critical current
 - \circ When additional current I_{in} is applied the junction will **switch** to normal state and voltage will be present

- SFQ is driven with **pulses**
 - Due to quantum effects the area under voltage pulse will be a multiple of flux quantum $A \propto \Phi_0 = h/2e$

$$I_{in} \uparrow f$$

Power consumption

- In the USA, Japan and China there are efforts to build exascale superconducting supercomputers
- Projections indicate 2 orders of magnitude improvement on energy efficiency compared to CMOS, when including also the cryocoolers.

Our proposed solutions

Long term targets

aCryComm focus

Metrics

	Power consumption	Bandwidth/footprint	
OE conversion @ 4 K	100 aJ/bit	1 Tbit/s/cm ² (E.g. 100 Gbit/s speed, 10 mm ² footprint)	
EO conversion @ 4 K	500 aJ/bit	1 Tbit/s/cm ² (E.g. 100 Gbit/s speed, 10 mm ² footprint)	
OE conversion @ 20 mK	20 aJ/bit	100 Gbit/s/cm ² (E.g. 10 Gbit/s speed, 10 mm ² footprint)	
EO conversion @ 20 mK	200 aJ/bit	100 Gbit/s/cm ² (E.g. 10 Gbit/s speed, 10 mm ² footprint)	

Challenges and opportunities

Challenges

- Mechanical behaviour of material and their combinations
- Nonlinear optical coefficients can be smaller at cryo T
- Carrier freeze-out (dopings must be careful designed)
- **Cannot dissipate** much heat per bit, especially in the mK regime and especially at high bit rates
- SFQ logic has inherent low-energy and low voltage

Opportunities

- Can use **superconductors** also for photonics (e.g. SNSPDs)
- Lower optical losses in metals: perfect case for plasmonic devices, that don't require any dopant
- Lower thermal noise
 - cleaner driving signals
 - more efficient drive of light sources
 - can better exploit thresholds

Cryogenic OE conversion

OE conversion

Need to develop converters of photonic signals into electrical signals, i.e. **photodetectors**

- for cryogenic operation
- energy efficient
- fast
- suitable to drive SFQ logic

SNSPD

Superconducting Nanowire Single Photon Detector

Specifications

Optimization wavelength	800 nm	1550 nm
System detection efficiency	≥ 90%	≥ 85%
Dark count rate	≤ 10 Hz	≤ 300 Hz
Standard timing jitter	≤ 40 ps	≤ 50 ps
Optional low timing jitter	≤ 15 ps	≤ 25 ps
Dead time ¹	≤ 10 ns	≤ 30 ns
Maximum count rate ²	≥ 80 MHz	≥ 50 MHz
Output pulse height	≥ 200 mV	≥ 200 mV
Number of channels	1-24	

SNSPD: working principle

(v)

C. M Natarajan et al., Supercond. Sci. Technol. 25, 063001 (2012)

Guided-wave SNSPD

2 orders of magnitude shorter nanowire

- 91% internal efficiency at 1550 nm
- 18 ps time jitter (1 order of magnitude smaller)
- < 1 ns recovery time (up to 2 orders of magnitude smaller)
- As low as 50 Hz dark count rate achieved (1.5 orders of magnitude improvement)

SNSPDs vs photodiodes

The generated voltage is in the order of 1 V

T, Ortlepp et al., Opt. Express 19, 18593-18601 (2011)

- SNSPDs have instead voltage and current levels comparable with those of SFQ circuits (mV, μA-mA)
- Indeed, efficient readout of SNSPDs with SFQ electronics have been demonstrated

High speed

Space division multiplexing Optical fibre **SNSPD**

Wavelength division multiplexing

Time division multiplexing

Alternative paths

Plasmonic detectors

- Fast
- No doping
- Lower metal losses

BUT Need voltage transformation (it could affect the overall speed)

(a) Perspective View

≈ 100 GHz

(b) Cross-Section View

P. Ma, ACS Photonics **6**, 154 (2019)

ETH zürich

100 GHz

Cryogenic EO conversion

EO conversion

Need to develop converters of SFQ electrical signals to photonic signals, i.e. either optical **modulators** or directly modulated **light sources**

- for cryogenic operation
- energy efficient
- fast
- compatible with SFQ pulses

EO conversion

SFQ electronics is a double-edged sword

Positive side

- Low power consumption
- Low heat dissipation

Negative side

Low power available to drive EO converters (e.g. electro-optical modulator)

First approach: modulators

Pros

- No dopants
- Lower metal losses

A. Melikyan, et al. *Nature Photonics* **8**, 229 (2014) W. Heni, et al. *ACS Photonics* **4**, 1576 (2017)

Cons

- Pockels effect may be smaller
- Need voltage transformation and SFQ signal amplification

 $100 \text{ mV} \rightarrow \text{mV}$

Fast

EO Bandwidth > 500 GHz

M. Burla, et al. APL Photonics 4, 056106 (2019)

Low-voltage

120 GBd NRZ with < 300 mV $_{\rm pp}$ driver

B. Baeuerle, et al. OFC19, M2F.3

Second approach: light sources

Directly modulated nanoscale light sources

Reduction of device dimensions

- ✓ Increase of modulation bandwidth
- ✓ Reduction J/bit
- Increase of spontaneous emission coupling factor
- ✓ Reduction of device footprint
- Increase of surface/volume
- Device processing challenges

C. Ning, Advanced Photonics, 1 014002 (2019)

Major challenges

- Carrier freeze-out
- Low energy and voltage from SFQ pulses

Major opportunities

- Reduced thermal noise: can better exploit thresholds
- Lower metal losses

Second approach: light sources

Tampere University

Directly modulated nanoscale light sources

Three approaches:

1. Oxide-free small VCSELs designed for cryogenic operation

M. Bayat et al., *IEEE JQE*, **56**, 1 (2020)

2. Metal-clad semiconductor nanolaser diodes

C. Fang et al., Opt. Lett. **44**, 3669-3672 (2019)

3. Electrically driven single- or few-photon sources based on quantum dots in semiconductor-metal hybrid nanocavities

Cryogenic packaging

Vision

- SFQ silicon chip as **motherboard**
- Hybrid integration of different chips based on flip-chip bonding
- Optical fibres coupled through holes in the silicon substrate

aCryComm demonstrators (3 years)

- 1. optical drive of SFQ at 4 K
- 2. optical drive of SFQ at 20 mK
- 3. SFQ output to optical fibre at 4 K
- SFQ output to optical fibre at 20 mK 4.

Glass wafer with "illuminator" chips for multi-fibre assemblies

VTT

Progress

Conclusion

Conclusion

- We have presented our vision how to upgrade supercomputers based on SFQ superconducting electronics as

 power efficient technology for GPUs
 cryogenic classical electronics for superconducting qubits
- We have shown how such upgrade can be made possible thanks to special optical interconnects
- We have shown our **3-year plan** how to develop the required cryogenic optoelectronic building blocks, including their assembly
- We our pioneering the field of **cryogenic optoelectronics**, and we know we are not alone. We will be happy to collaborate and share visions with all other pioneers all around the world

Out 2 days ago

nature

Explore Content V Journal Information V Publish With Us V

nature > articles > article

Article Published 24 March 2021

Control and readout of a superconducting qubit using a photonic link

F. Lecocq 🖂, F. Quinlan 🔄, K. Cicak, J. Aumentado, S. A. Diddams & J. D. Teufel 🖂

Nature **591**, 575–579(2021) Cite this article

316 Accesses 60 Altmetric Metrics

Demonstrated with commercial InGaAs telecom photodiodes

Acknowledgements

Joonas Govenius, Emma Mykkänen, Antti Kemppinen, Jaani Nissilä, Giovanni Delrosso, Kirsi Tappura, Visa Vesterinen

Tampere University Juha Viheriälä, Teemu Hakkarainen, Mircea Guina

KTH Stephan Steinhauer, Val Zwiller

ETH zürich Stefan Köpfli, Michael Baumann, Juerg Leuthold, Maurizio Burla

Special thanks to

European Commission Grant agreement ID: 899558

BLUE David Gunnarsson

Thank you