Stochastic control and EQFT

by Nikolay Barashkov

Want to consider measures of the form

$$
\mathrm{d} \nu=\exp (-S(\varphi)) \mathrm{d} \varphi
$$

- $\mathrm{d} \varphi$ is the Lebeque measure on some space of configuartions $\mathcal{S}^{\prime}(\Lambda)$ and e.g $\Lambda=\varepsilon \mathbb{Z}^{d}, \mathbb{R}^{d}, \mathbb{T}^{d}$.
- S is an action, typically

$$
\begin{gathered}
S(\varphi)=\int \lambda V(\varphi)+m^{2} \varphi^{2}+|\nabla \varphi|^{2} \mathrm{~d} x \\
V(\varphi)=\cos (\beta \varphi), \exp (\beta \varphi), \varphi^{4}
\end{gathered}
$$

$\mathrm{d} \varphi$ does not make sense if the configuartions space is infinite dimesional \Rightarrow use the quadratic term of the action to pass to a gaussian measure.

$$
\mathrm{d} \mu=\exp \left(-\int m^{2} \varphi^{2}+|\nabla \varphi|^{2} \mathrm{~d} x\right) \quad \text { Gaussian Free Field }
$$

Gaussian measure with covariance $\left(m^{2}-\Delta\right)^{-1}$.
$\diamond \mu$ probability measure supported on distributions of regularity $-\frac{d-2}{2}-\delta$ for any $\delta>0$

\Rightarrow Cannot define $V(\varphi)$ on the support on μ in a straightforward fashion.

Now consider $d=2$. Consider an approximation of μ_{T} of μ with covariance

$$
\begin{gathered}
\mathcal{C}_{T}=\rho_{T}(D)\left(m^{2}-\Delta\right)^{-1}=\int_{0}^{T} J_{t}^{2} \mathrm{~d} t \quad J_{t}=\left(m^{2}-\Delta\right)^{-1 / 2} \sigma_{t}(D) \\
\rho_{T}=1 \text { for }|x| \leqslant T \text { compactly supported } \sigma_{t}=\sqrt{\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{t}}
\end{gathered}
$$

Then with $\phi_{T}=\rho_{T}(D) \phi$

$$
\llbracket \phi_{T}^{4} \rrbracket=\phi_{T}^{4}-\alpha_{T} \phi^{2}+\beta_{T} \rightarrow \llbracket \phi_{\infty}^{4} \rrbracket \in \mathcal{C}_{\mathrm{loc}}^{-\delta}(\Lambda)
$$

and this limit exists μ almost surely. Similarly we can consider

$$
\llbracket \sin \left(\beta \phi_{T}\right) \rrbracket=T^{\beta^{2} / 4 \pi} \sin \left(\beta \phi_{T}\right) \in \mathcal{C}_{\mathrm{loc}}^{-\beta^{2} / 4 \pi-\delta}(\Lambda)
$$

and this limit also exists almost surely. (Complex GMC).
\diamond Existence of measures in the continuum/infinite volume limit
\diamond Uniqueness, Decay of correlations, OS Axioms
\diamond Description of the measure in some sense
\diamond Pathwise properties
\diamond Large deviations in Semiclassical limt
\diamond We are interested in an "effective theory", i.e what we observe at "low" (finite) freqencies.
Consider functional $f: \mathcal{S}^{\prime}(\Lambda) \rightarrow \mathbb{R}$ and

$$
\mathcal{L}(f)=\lim _{T \rightarrow \infty} \int \exp (-f(\varphi)) \exp \left(-V_{T}(\varphi)\right) \mathrm{d} \mu(\varphi)
$$

and assume that $f(\varphi)=f\left(P_{t} \varphi\right)$ where P_{T} is a projector on frequencies $\leqslant t$.
\diamond Decompose $\mu=\mu_{t} * \mu_{t, T}$ where μ_{t} has covariance \mathcal{C}_{t} and $\mu_{t, T}$ has covariance $\mathcal{C}_{T}-\mathcal{C}_{t}$.

$$
\begin{aligned}
& \int \exp (-f(\tilde{\varphi})) \exp \left(-V_{T}(\tilde{\varphi})\right) \mathrm{d} \mu(\tilde{\varphi}) \\
= & \int \exp (-f(\varphi)) \exp (-V(\varphi+\psi)) \mathrm{d} \mu_{t}(\varphi) \mathrm{d} \mu_{t, T}(\psi) \\
= & \int \exp (-f(\varphi)) \exp \left(-V_{t, T}(\varphi)\right) \mathrm{d} \mu_{t}(\varphi)
\end{aligned}
$$

with

$$
V_{t, T}(\varphi)=-\log \int \exp (-V(\varphi+\psi)) \mathrm{d} \mu_{t, T}(\psi)
$$

Want to show that the limit $T \rightarrow \infty$ exists if we keep $t<\infty$ fixed.

Can derive a PDE for the effective potential.

Proposition 1. Assume that $V_{T} \in C^{2}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)$. Then $V_{t, T}$ satisfies

$$
\begin{gathered}
\frac{\partial}{\partial t} V_{t, T}(\varphi)+\frac{1}{2} \operatorname{Tr}\left(\dot{\mathcal{C}}_{t} \operatorname{Hess} V_{t, T}(\varphi)\right)-\frac{1}{2}\left\|J_{t} \nabla V_{t, T}(\varphi)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=0 \\
V_{T, T}(\varphi)=V_{T}(\varphi)
\end{gathered}
$$

Furthermore if $V_{T} \in C^{2}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)$ then $V_{t, T} \in C\left([0, T], C^{2}\left(L^{2}\left(\mathbb{R}^{2}\right)\right)\right) \cap C^{1}\left([0, T], C\left(L^{2}\left(\mathbb{R}^{2}\right)\right)\right)$.

Want to study

$$
\inf _{u \in \mathbb{H}_{a}} \mathbb{E}\left[V\left(Y_{T}\right)+\int_{0}^{T} l_{s}\left(Y_{s}, u_{s}\right) \mathrm{d} s\right]
$$

with \mathcal{H} hilbert space (e.g \mathbb{R}^{n}), $V: \mathcal{H} \rightarrow \mathbb{R}, V \in C^{2}(\mathcal{H})$ and $l: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& \mathrm{d} Y_{s}=\beta\left(s, u_{s}\right) \mathrm{d} s+\sigma_{s} \mathrm{~d} X_{s} \quad Y_{0}=0 . \\
& \sigma: \mathcal{H} \rightarrow \mathcal{H} \text { linear } \quad \beta: \mathbb{R} \times \mathcal{H} \rightarrow \mathbb{R} .
\end{aligned}
$$

$$
\mathbb{H}_{a}=\{\text { space of processes }[0, T] \rightarrow \mathcal{H} \text { adapted to } X\}
$$

Introduce the value function

$$
V_{t, T}(\varphi)=\mathbb{E}\left[V\left(Y_{t, T}\right)+\int_{t}^{T} l_{s}\left(Y_{t, s}, u_{s}\right) \mathrm{d} s\right]
$$

where now

$$
\mathrm{d} Y_{t, s}=\beta\left(s, u_{s}\right) \mathrm{d} s+\sigma_{s} \mathrm{~d} X_{s} \quad Y_{t}=\varphi
$$

Proposition 2. (Bellmann)

$$
\inf _{u} \mathbb{E}\left[V\left(Y_{T}\right)+\int_{0}^{T} l_{s}\left(Y_{s}, u_{s}\right) \mathrm{d} s\right]=\inf _{u} \mathbb{E}\left[V_{t, T}\left(Y_{T}\right)+\int_{0}^{t} l_{s}\left(Y_{s}, u_{s}\right) \mathrm{d} s\right]
$$

Furthermore if u is a minimizer of the I.h.s, then $\left.u\right|_{[0, t]}$ is a minimizer of the r.h.s.
From this we can derive a PDE for $V_{t, T}$ which looks like

$$
\begin{equation*}
\frac{\partial}{\partial t} v(t, \varphi)+\frac{1}{2} \inf _{a \in \mathcal{H}}\left[\operatorname{Tr}\left(\sigma^{2} \operatorname{Hess} v(t, \varphi)\right)+\langle\nabla v, \beta(t, a)\rangle_{\mathcal{H}}+l(t, \varphi, a)\right]=0 \tag{1}
\end{equation*}
$$

Proposition 3. (Verification) Assume that $v \in C\left([0, T], C^{2, \operatorname{loc}}(\mathcal{H})\right) \cap C^{1, \operatorname{loc}}([0, T], C(\mathcal{H}))$ and v solves (1) with $v(T, \varphi)=V_{T}(\varphi)$. Furthermore assume that there exists $u \in \mathbb{H}_{a}$ and Y such that u, Y satisfy the state equation and

$$
\begin{equation*}
u_{t} \in \operatorname{argmin}_{a \in \Lambda}\left[\operatorname{Tr}\left(\sigma^{2} \operatorname{Hess} v\left(t, Y_{t}\right)\right)+\left\langle\nabla v\left(t, Y_{t}\right), \beta(t, a)\right\rangle_{H}+l\left(t, Y_{t}, a\right)\right] \tag{2}
\end{equation*}
$$

Then $v(t, \varphi)=V_{t, T}(\varphi)$ and the pair u, Y is optimal.
$\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{aligned}
\beta(t, a) & =J_{t} a \\
\sigma_{t} & =J_{t} \\
l\left(t, Y_{t}, a\right) & =\frac{1}{2}\|a\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}
\end{aligned}
$$

Then (2) becomes a minimization problem for a quadratic functional and reduces to

$$
u_{t}=-J_{t} \nabla v\left(t, Y_{s, t}\right) .
$$

This means if we can solve the equation

$$
\begin{equation*}
\mathrm{d} Y_{s, t}=-J_{t}^{2} \nabla v\left(t, Y_{s, t}\right) \mathrm{d} t+J_{t} \mathrm{~d} X_{t} \tag{3}
\end{equation*}
$$

we can apply the verification theorem.

Furthermore in this case (1) takes the form

$$
\begin{equation*}
\frac{\partial}{\partial t} v(t, \varphi)+\frac{1}{2} \operatorname{Tr}\left(J_{t}^{2} \operatorname{Hess} v(t, \varphi)\right)-\frac{1}{2}\left\|J_{t} \nabla v(t, \varphi)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=0 \tag{4}
\end{equation*}
$$

which is precisely the Polchinski equation.

Corollary 4.

$$
-\log \mathbb{E}\left[e^{-V_{T}\left(\varphi+W_{t, T}\right)}\right]=\inf _{u \in \mathbb{H}_{a}} \mathbb{E}\left[V_{T}\left(Y_{s, T}(u, \varphi)\right)+\frac{1}{2} \int_{s}^{T}\left\|u_{t}\right\|_{L^{2}}^{2} \mathrm{~d} t\right]
$$

where \mathbb{H}_{a} is the space of processes adapted to X_{t} such that $\mathbb{E}\left[\int_{0}^{\infty}\left\|u_{t}\right\|_{L^{2}}^{2} \mathrm{~d} t\right]<\infty$ and $Y_{t}(u, \varphi)$ satisfies

$$
\begin{gathered}
\mathrm{d} Y_{s, t}(u, \varphi)=-J_{t}^{2} u_{t} \mathrm{~d} t+J_{t} \mathrm{~d} X_{t} \\
Y_{s, s}(u, \varphi)=\varphi
\end{gathered}
$$

Take $\Lambda=\mathbb{T}^{2}$ and denote

$$
I_{T}(u)=\int_{0}^{T} J_{t} u_{t} \mathrm{~d} t \quad W_{T}=\int_{0}^{T} J_{t} \mathrm{~d} X_{t}
$$

From previous slide we have with $V_{T}\left(\varphi_{T}\right)=\int \llbracket \varphi_{T} \rrbracket \mathrm{~d} x$

$$
\begin{aligned}
& -\log \int \exp \left(-f(\varphi)-V_{T}(\varphi)\right) \\
= & \inf _{u \in \mathbb{H}_{a}} \mathbb{E}\left[\int_{\Lambda} \llbracket\left(W_{T}+I_{T}(u)\right)^{4} \rrbracket \mathrm{~d} x+\frac{1}{2} \int_{0}^{T}\|u\|_{L^{2}}^{2} \mathrm{~d} t\right]
\end{aligned}
$$

From this we immidiatly see (can also be done by Jensen)

$$
-\log \int \exp \left(-f(\varphi)-V_{T}(\varphi)\right) \leqslant \mathbb{E}\left[f\left(W_{T}\right)+\int_{\Lambda} \llbracket\left(W_{T}\right)^{4} \rrbracket \mathrm{~d} x\right]=\mathbb{E}\left[f\left(W_{T}\right)\right]
$$

It is not hard do thow that

$$
\left\|I_{T}(u)\right\|_{H^{1}} \leqslant\left(\int_{0}^{T}\|u\|_{L^{2}}^{2} \mathrm{~d} t\right)^{1 / 2}
$$

Expanding we have

$$
\begin{aligned}
& \mathbb{E}\left[f\left(W_{T}+I_{T}(u)\right)+\int_{\Lambda} \llbracket\left(W_{T}+I_{T}(u)\right)^{4} \rrbracket \mathrm{~d} x+\frac{1}{2} \int_{0}^{T}\|u\|_{L^{2}}^{2} \mathrm{~d} t\right] \\
= & \mathbb{E}\left[f\left(W_{T}+I_{T}(u)\right)+\int_{\Lambda} \llbracket W_{T}^{3} \rrbracket I_{T}(u) \mathrm{d} x+4 \int_{\Lambda} \llbracket W_{T}^{2} \rrbracket I_{T}^{2}(u) \mathrm{d} x+6 \int_{\Lambda} W_{T} I_{T}^{3}(u) \mathrm{d} x\right. \\
& \left.+\int I_{T}^{4}(u) \mathrm{d} x+\frac{1}{2} \int_{0}^{T}\|u\|_{L^{2}}^{2} \mathrm{~d} t\right]
\end{aligned}
$$

Now to get the corresponding lower bound to our upper bound we need

$$
\mathbb{E} \mid \text { red } \mid \leqslant C+\delta \mathbb{E}[\text { green }] .
$$

For example

$$
\begin{aligned}
& \mathbb{E} \int_{\Lambda} \llbracket W_{T}^{3} \rrbracket I_{T}(u) \mathrm{d} x \\
\leqslant & C \mathbb{E}\left\|\llbracket W_{T}^{3} \rrbracket\right\|_{H^{-1}(\Lambda)}^{2}+\varepsilon \mathbb{E}\left\|I_{T}(u)\right\|_{H^{1}(\Lambda)}^{2} \\
\leqslant & C+\varepsilon \mathbb{E}\left\|I_{T}(u)\right\|_{H^{1}(\Lambda)}^{2} .
\end{aligned}
$$

Similar for the other terms \Rightarrow Uniform upper and lower bounds on the Laplace tranform.

Now partition function diverges so we have to consider

$$
\lim _{\rho \rightarrow 1} \mathcal{W}^{\rho}(f)-\mathcal{W}^{\rho}(0)
$$

where $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$

$$
\mathcal{W}^{\rho}(f)=\inf _{u \in \mathbb{H}_{a}} \mathbb{E}\left[f\left(W_{\infty}+I_{\infty}(u)\right)+\int \rho V_{\infty}\left(W_{\infty}+I_{\infty}(u)\right)+\frac{1}{2} \int_{0}^{\infty}\left\|u_{t}\right\|_{L^{2}}^{2} \mathrm{~d} t\right]
$$

\Rightarrow Have to study the optimizer on the r.h.s and control the depencede on f. E.g. want something like

$$
\int_{0}^{\infty} \int \exp (\gamma|x|)\left|u_{t}^{f, \rho}-u_{t}^{0, \rho}\right|^{2} \mathrm{~d} x \mathrm{~d} t
$$

where $u^{f, \rho}$ is the optimizer on the r.h.s. Then we can pass to the limit in

$$
\lim _{\rho \rightarrow 1} \mathcal{W}^{\rho}(f)-\mathcal{W}^{\rho}(0)
$$

and obtain an expression for the laplace transform. Proving decay of correlations is also possible.

Euler Lagrange equations

We can study the optimizer via it's EL equations. For $h \in \mathbb{H}_{a}$

$$
\begin{aligned}
& \mathbb{E}\left[\nabla f\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right) I_{\infty}(h)\right] \\
= & \mathbb{E}\left[\int \rho \nabla V\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right) I_{\infty}(h) \mathrm{d} x\right] \\
& +\mathbb{E}\left[\int_{0}^{\infty} \int u_{t}^{f, \rho} h_{t} \mathrm{~d} x \mathrm{~d} t\right]
\end{aligned}
$$

So taking difference

$$
\begin{aligned}
& \mathbb{E}\left[\nabla f\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right) I_{\infty}(h)\right] \\
= & \mathbb{E}\left[\int \rho\left(\nabla V\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right)-\nabla V\left(W_{\infty}+I_{\infty}\left(u^{0, \rho}\right)\right)\right) I_{\infty}(h) \mathrm{d} x\right] \\
& +\mathbb{E}\left[\int_{0}^{\infty} \int\left(u_{t}^{f, \rho}-u_{t}^{\rho}\right) h_{t} \mathrm{~d} x \mathrm{~d} t\right]
\end{aligned}
$$

Imagine if V was convex. Then testing with $h=\exp (\gamma|x|)\left(u^{f, \rho}-u^{0, \rho}\right)$ we get

$$
\begin{aligned}
& \mathbb{E}\left[\exp (\gamma|x|) \nabla f\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right) I_{\infty}\left(u^{f, \rho}-u^{0, \rho}\right)\right] \\
= & \mathbb{E}\left[\int \rho \exp (\gamma|x|)\left(\nabla V\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right)-\nabla V\left(W_{\infty}+I_{\infty}\left(u^{0, \rho}\right)\right)\right) I_{\infty}\left(u^{f, \rho}-u^{0, \rho}\right) \mathrm{d} x\right] \\
& +\mathbb{E}\left[\int_{0}^{\infty} \int \exp (\gamma|x|)\left(u_{t}^{f, \rho}-u_{t}^{\rho}\right)^{2} \mathrm{~d} x \mathrm{~d} t\right]
\end{aligned}
$$

If V is convex then

$$
\int \rho \exp (\gamma|x|)\left(\nabla V\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right)-\nabla V\left(W_{\infty}+I_{\infty}\left(u^{0, \rho}\right)\right)\right) I_{\infty}\left(u^{f, \rho}-u^{0, \rho}\right) \mathrm{d} x \geqslant 0
$$

SO
$\mathbb{E}\left[\int_{0}^{\infty} \int \exp (\gamma|x|)\left(u_{t}^{f, \rho}-u_{t}^{\rho}\right)^{2} \mathrm{~d} x \mathrm{~d} t\right] \leqslant\left|\mathbb{E}\left[\exp (\gamma|x|) \nabla f\left(W_{\infty}+I_{\infty}\left(u^{f, \rho}\right)\right) I_{\infty}\left(u^{f, \rho}-u^{0, \rho}\right)\right]\right|$
and with a nice f the r.h.s is bounded by

$$
\mathbb{E}\left[\int_{0}^{\infty} \int \exp (\gamma|x|)\left(u_{t}^{f, \rho}-u_{t}^{\rho}\right)^{2} \mathrm{~d} x \mathrm{~d} t\right]^{1 / 2}
$$

Now $\Lambda=\mathbb{R}^{2}$ and

$$
V_{T}(\phi)=\lambda T^{\beta^{2} / 4 \pi} \cos (\beta \phi)
$$

In this case we can obtain quite strong bounds on the minimizer.

Lemma 5. (Envelope theorem)

$$
\nabla V_{t, T}(\varphi)=\mathbb{E}\left[\nabla V_{T}\left(W_{t, T}+I_{t, T}\left(u^{\varphi}\right)+\varphi\right)\right]
$$

where u^{φ} minimizes

$$
\mathbb{E}\left[\int \rho V_{T}\left(W_{t, T}+I_{t, T}\left(u^{\varphi}\right)+\varphi\right)+\frac{1}{2} \int_{t}^{T}\left\|u_{s}\right\|_{L^{2}}^{2} \mathrm{~d} t\right]
$$

$$
\Rightarrow\left\|\nabla V_{t, T}\right\|_{L^{\infty}} \leqslant\left\|\nabla V_{T}\right\|_{L^{\infty}} . \text { So }
$$

$$
\left\|u_{t}^{\varphi}\right\|_{L^{\infty}}=\left\|J_{t} \nabla V_{t, T}\left(W_{t, T}+I_{t, T}\left(u^{\varphi}\right)+\varphi\right)\right\|_{L^{\infty}} \leqslant t^{-1} T^{\beta^{2} / 4 \pi}
$$

Now lets take

$$
\begin{aligned}
& \left\|\nabla V_{t, T}(\varphi)\right\|_{L^{\infty}} \\
= & \left\|\mathbb{E}\left[\nabla V_{T}\left(W_{t, T}+I_{t, T}\left(u^{\varphi}\right)+\varphi\right)\right]\right\|_{L^{\infty}} \\
= & \left\|\mathbb{E}\left[\nabla V_{T}\left(W_{t, T}+\varphi\right)+\int \nabla V_{T}\left(W_{t, T}+\varphi+\theta I_{t, T}\left(u^{\varphi}\right)\right) I_{t, T}\left(u^{\varphi}\right) \mathrm{d} \theta\right]\right\|_{L^{\infty}} \\
\leqslant & \left\|\mathbb{E}\left[T^{\beta^{2} / 4 \pi} \sin \left(\beta\left(W_{t, T}+\varphi\right)\right)\right]\right\|_{L^{\infty}}+\mathbb{E}\left[\int\left\|\nabla V_{T}\left(W_{t, T}+\varphi+\theta I_{t, T}\left(u^{\varphi}\right)\right) I_{t, T}\left(u^{\varphi}\right)\right\|_{L^{\infty}} \mathrm{d} \theta\right] \\
\leqslant & \left\|\mathbb{E}\left[t^{\beta^{2} / 4 \pi} \sin (\beta \varphi)\right]\right\|_{L^{\infty}}+t^{-1} T^{\beta^{2} / 4 \pi} \\
\leqslant & t^{\beta^{2} / 4 \pi}+2 t^{\beta^{2} / 4 \pi-1}
\end{aligned}
$$

Now can proceed inductivly to obtain

$$
\sup \left\|\nabla V_{t, T}(\varphi)\right\|_{L^{\infty}} \lesssim t^{\beta^{2} / 4 \pi}
$$

from this we get

$$
\|u\|_{L^{\infty}} \lesssim t^{\beta^{2} / 4 \pi-1} \sup _{\varphi}\left\|\nabla V_{t, T}(\varphi)\right\|_{L^{\infty}}
$$

We can calculate by Ito's formulate

$$
\begin{aligned}
& \int \llbracket \cos \left(\beta W_{\infty}+\beta I_{\infty}(u)\right) \rrbracket \mathrm{d} x \\
= & \int_{0}^{\infty} \int \llbracket \cos \left(\beta W_{t}+\beta I_{t}(u)\right) \rrbracket J_{t} u_{t} \mathrm{~d} x \mathrm{~d} t+\text { martingale. } \\
= & \int_{0}^{\infty} \int J_{t} \llbracket \cos \left(\beta W_{t}+\beta I_{t}(u)\right) \rrbracket u_{t} \mathrm{~d} x+\text { martingale }
\end{aligned}
$$

This gives us that

$$
\lambda \int_{0}^{\infty} \int J_{t} \llbracket \cos \left(\beta W_{t}+\beta I_{t}(u)\right) \rrbracket u_{t} \mathrm{~d} x
$$

is semiconvex in u and if λ is sufficiently small

$$
\lambda \int_{0}^{\infty} \int J_{t} \llbracket \cos \left(\beta W_{t}+\beta I_{t}(u)\right) \rrbracket u_{t} \mathrm{~d} x+\frac{1}{2} \int_{0}^{\infty}\|u\|_{L^{2}}^{2} \mathrm{~d} t
$$

is convex in u.

We can obtain a coupling between the Free Field and the Sine Gordon measure. Set

$$
\nu^{\mathrm{SG}}=\frac{1}{Z^{\rho}} \exp \left(-\int \rho \llbracket \cos (\beta \phi) \rrbracket\right) \mathrm{d} \mu \quad Z^{\rho}=\int \exp \left(-\int \rho \llbracket \cos (\beta \phi) \rrbracket\right) \mathrm{d} \mu
$$

Proposition 6.

$$
\int f(\varphi) \mathrm{d} \nu_{\mathrm{SG}}^{\rho}=\mathbb{E}\left[f\left(W_{\infty}+I_{\infty}\left(u^{\rho}\right)\right)\right]
$$

One can show

$$
\sup _{\rho}\left\|I_{\infty}\left(u^{\rho}\right)\right\|_{L^{\infty}\left(\mathbb{P}, C^{2-\delta}\right)}<\infty
$$

\diamond Proof uses that

$$
\int f(\varphi) \mathrm{d} \nu_{\mathrm{SG}}^{\rho}=\lim _{s \rightarrow 0} \frac{1}{s}\left(\log \int \exp (-s f(\varphi)) \mathrm{d} \nu_{\mathrm{SG}}^{\rho}-\log Z^{\rho}\right)
$$

\diamond Bauerschmidt-Hofstetter derive results on the maximum of the Sine-Gordon field.

Want to study semiclassical limit of measures

$$
\nu_{\mathrm{SG}, \hbar}=\exp \left(-\frac{\lambda}{\hbar} \int_{\mathbb{R}^{2}} \llbracket \sin (\beta \phi) \rrbracket-\frac{1}{\hbar} \int_{\mathbb{R}^{2}} \phi\left(m^{2}-\Delta\right) \phi \mathrm{d} x\right)=\exp \left(-\frac{\lambda}{\hbar} \int_{\mathbb{R}^{2}} \llbracket \sin (\beta \phi) \rrbracket \mathrm{d} x\right) \mu^{\hbar}
$$

where the covariance of μ^{\hbar} is

$$
\hbar\left(m^{2}-\Delta\right)^{-1}
$$

A seqeunce of measures ν_{\hbar} satisfies a large deviation principle with rate function L if

$$
\lim _{\hbar \rightarrow 0}-\hbar \log \int \exp \left(-\frac{1}{\hbar} f(\phi)\right) \mathrm{d} \nu_{\hbar}=\inf _{\phi}\{f(\phi)+L(\phi)\}
$$

Proposition 7. If λ is suffienclty small, $\nu_{\mathrm{SG}, \hbar}$ satisfies a large deviations with rate functions

$$
L(\varphi)=\lambda \int_{\mathbb{R}^{2}} \cos (\beta \phi) \mathrm{d} x+\int_{\mathbb{R}^{2}} \phi\left(m^{2}-\Delta\right) \phi \mathrm{d} x
$$

Thank you!

