Stochastic control and EQFT

by Nikolay Barashkov

Statistical Mechanics/EQFT

Want to consider measures of the form

$$d\nu = \exp(-S(\varphi))d\varphi$$

- $d\varphi$ is the Lebeque measure on some space of configurations $\mathcal{S}'(\Lambda)$ and e.g $\Lambda = \varepsilon \mathbb{Z}^d, \mathbb{R}^d, \mathbb{T}^d$.
- S is an action, typically

$$S(\varphi) = \int \lambda V(\varphi) + m^2 \varphi^2 + |\nabla \varphi|^2 \mathrm{d}x$$

 $V(\varphi) = \cos(\beta\varphi), \exp(\beta\varphi), \varphi^4$

 $d\varphi$ does not make sense if the configuartions space is infinite dimesional \Rightarrow use the quadratic term of the action to pass to a gaussian measure.

$$d\mu = \exp\left(-\int m^2 \varphi^2 + |\nabla \varphi|^2 dx\right)$$
 Gaussian Free Field

 \diamondsuit Gaussian measure with covariance $(m^2-\Delta)^{-1}.$

 $\diamondsuit~\mu$ probability measure supported on distributions of regularity $-\frac{d-2}{2}-\delta$ for any $\delta>0$

 \Rightarrow Cannot define $V(\varphi)$ on the support on μ in a straightforward fashion.

Wick ordering

Now consider d=2. Consider an approximation of μ_T of μ with covariance

$$C_T = \rho_T(D)(m^2 - \Delta)^{-1} = \int_0^T J_t^2 dt \qquad J_t = (m^2 - \Delta)^{-1/2} \sigma_t(D)$$

$$\rho_T = 1 \text{ for } |x| \leq T \text{ compactly supported } \sigma_t = \sqrt{\frac{\mathrm{d}}{\mathrm{d}t}} \rho_t$$

Then with $\phi_T = \rho_T(D)\phi$

$$\llbracket \phi_T^4 \rrbracket = \phi_T^4 - \alpha_T \phi^2 + \beta_T \to \llbracket \phi_\infty^4 \rrbracket \in \mathcal{C}_{\mathrm{loc}}^{-\delta}(\Lambda)$$

and this limit exists μ almost surely. Similarly we can consider

$$\llbracket\sin(\beta\phi_T)\rrbracket = T^{\beta^2/4\pi}\sin(\beta\phi_T) \in \mathcal{C}_{\mathrm{loc}}^{-\beta^2/4\pi-\delta}(\Lambda)$$

and this limit also exists almost surely. (Complex GMC).

Questions

 \diamondsuit Existence of measures in the continuum/infinite volume limit

 \diamondsuit Uniqueness, Decay of correlations, OS Axioms

 \diamondsuit Description of the measure in some sense

 \diamondsuit Pathwise properties

 \diamond Large deviations in Semiclassical limt

Renormalization

 \diamond We are interested in an "effective theory", i.e what we observe at "low" (finite) frequencies. \diamond Consider functional $f: S'(\Lambda) \to \mathbb{R}$ and

$$\mathcal{L}(f) = \lim_{T \to \infty} \int \exp(-f(\varphi)) \exp(-V_T(\varphi)) d\mu(\varphi)$$

and assume that $f(\varphi) = f(P_t \varphi)$ where P_T is a projector on frequencies $\leq t$.

 \diamond Decompose $\mu = \mu_t * \mu_{t,T}$ where μ_t has covariance C_t and $\mu_{t,T}$ has covariance $C_T - C_t$.

$$\int \exp(-f(\tilde{\varphi})) \exp(-V_T(\tilde{\varphi})) d\mu(\tilde{\varphi})$$

=
$$\int \exp(-f(\varphi)) \exp(-V(\varphi + \psi)) d\mu_t(\varphi) d\mu_{t,T}(\psi)$$

=
$$\int \exp(-f(\varphi)) \exp(-V_{t,T}(\varphi)) d\mu_t(\varphi)$$

with

$$V_{t,T}(\varphi) = -\log \int \exp(-V(\varphi + \psi)) d\mu_{t,T}(\psi)$$

Polchinski equation

 \diamondsuit Want to show that the limit $T \rightarrow \infty$ exists if we keep $t < \infty$ fixed.

 \diamondsuit Can derive a PDE for the effective potential.

Proposition 1. Assume that $V_T \in C^2(L^2(\mathbb{R}^2))$. Then $V_{t,T}$ satisfies

$$\frac{\partial}{\partial t} V_{t,T}(\varphi) + \frac{1}{2} \operatorname{Tr}(\dot{\mathcal{C}}_t \operatorname{Hess} V_{t,T}(\varphi)) - \frac{1}{2} \|J_t \nabla V_{t,T}(\varphi)\|_{L^2(\mathbb{R}^2)}^2 = 0$$
$$V_{T,T}(\varphi) = V_T(\varphi).$$

Furthermore if $V_T \in C^2(L^2(\mathbb{R}^2))$ then $V_{t,T} \in C([0,T], C^2(L^2(\mathbb{R}^2))) \cap C^1([0,T], C(L^2(\mathbb{R}^2)))$.

 \diamondsuit Want to study

$$\inf_{u \in \mathbb{H}_a} \mathbb{E} \bigg[V(Y_T) + \int_0^T l_s(Y_s, u_s) \mathrm{d}s \bigg]$$

with \mathcal{H} hilbert space (e.g \mathbb{R}^n), $V: \mathcal{H} \to \mathbb{R}$, $V \in C^2(\mathcal{H})$ and $l: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$,

 $dY_s = \beta(s, u_s)ds + \sigma_s dX_s \qquad Y_0 = 0.$

 $\sigma: \mathcal{H} \to \mathcal{H} \text{ linear } \qquad \beta: \mathbb{R} \times \mathcal{H} \to \mathbb{R}.$

 $\mathbb{H}_a = \{ \text{space of processes } [0, T] \to \mathcal{H} \text{ adapted to } X \}.$

Introduce the value function

$$V_{t,T}(\varphi) = \mathbb{E}\left[V(Y_{t,T}) + \int_t^T l_s(Y_{t,s}, u_s) \mathrm{d}s\right]$$

where now

$$dY_{t,s} = \beta(s, u_s)ds + \sigma_s dX_s \qquad Y_t = \varphi.$$

Proposition 2. (Bellmann)

$$\inf_{u} \mathbb{E}\left[V(Y_T) + \int_0^T l_s(Y_s, u_s) \mathrm{d}s\right] = \inf_{u} \mathbb{E}\left[V_{t,T}(Y_T) + \int_0^t l_s(Y_s, u_s) \mathrm{d}s\right]$$

Furthermore if u is a minimizer of the l.h.s, then $u|_{[0,t]}$ is a minimizer of the r.h.s.

From this we can derive a PDE for $V_{t,T}$ which looks like

$$\frac{\partial}{\partial t}v(t,\varphi) + \frac{1}{2}\inf_{a\in\mathcal{H}}\left[\operatorname{Tr}(\sigma^{2}\operatorname{Hess} v(t,\varphi)) + \langle \nabla v, \beta(t,a) \rangle_{\mathcal{H}} + l(t,\varphi,a)\right] = 0$$
(1)

Proposition 3. (Verification) Assume that $v \in C([0,T], C^{2,\text{loc}}(\mathcal{H})) \cap C^{1,\text{loc}}([0,T], C(\mathcal{H}))$ and v solves (1) with $v(T, \varphi) = V_T(\varphi)$. Furthermore assume that there exists $u \in \mathbb{H}_a$ and Y such that u, Y satisfy the state equation and

$$u_t \in \operatorname{argmin}_{a \in \Lambda}[\operatorname{Tr}(\sigma^2 \operatorname{Hess} v(t, Y_t)) + \langle \nabla v(t, Y_t), \beta(t, a) \rangle_H + l(t, Y_t, a)].$$
(2)

Then $v(t, \varphi) = V_{t,T}(\varphi)$ and the pair u, Y is optimal.

Concrete situation

 $\mathcal{H}\,{=}\,L^2(\mathbb{R}^2)$ and

$$\beta(t,a) = J_t a$$

$$\sigma_t = J_t$$

$$l(t, Y_t, a) = \frac{1}{2} \|a\|_{L^2(\mathbb{R}^2)}^2$$

Then (2) becomes a minimization problem for a quadratic functional and reduces to

 $u_t = -J_t \nabla v(t, Y_{s,t}).$

This means if we can solve the equation

$$dY_{s,t} = -J_t^2 \nabla v(t, Y_{s,t}) dt + J_t dX_t,$$
(3)

we can apply the verification theorem.

Concrete situation

Furthermore in this case (1) takes the form

$$\frac{\partial}{\partial t}v(t,\varphi) + \frac{1}{2}\operatorname{Tr}(J_t^2 \operatorname{Hess} v(t,\varphi)) - \frac{1}{2} \|J_t \nabla v(t,\varphi)\|_{L^2(\mathbb{R}^2)}^2 = 0,$$
(4)

which is precisely the Polchinski equation.

Corollary 4.

$$-\log\mathbb{E}[e^{-V_T(\varphi+W_{t,T})}] = \inf_{u\in\mathbb{H}_a}\mathbb{E}\left[V_T(Y_{s,T}(u,\varphi)) + \frac{1}{2}\int_s^T \|u_t\|_{L^2}^2 \mathrm{d}t\right]$$

where \mathbb{H}_a is the space of processes adapted to X_t such that $\mathbb{E}[\int_0^\infty ||u_t||_{L^2}^2 dt] < \infty$ and $Y_t(u, \varphi)$ satisfies

$$\mathrm{d}Y_{s,t}(u,\varphi) = -J_t^2 u_t \mathrm{d}t + J_t \mathrm{d}X_t$$

$$Y_{s,s}(u,\varphi) = \varphi.$$

Construction of Φ_2^4 in finite volume

Take $\Lambda \,{=}\, \mathbb{T}^2$ and denote

$$I_T(u) = \int_0^T J_t u_t \mathrm{d}t \qquad W_T = \int_0^T J_t \mathrm{d}X_t.$$

From previous slide we have with $V_T(\varphi_T) = \int [\![\varphi_T]\!] dx$

$$-\log \int \exp(-f(\varphi) - V_T(\varphi))$$

=
$$\inf_{u \in \mathbb{H}_a} \mathbb{E} \left[\int_{\Lambda} \left[(W_T + I_T(u))^4 \right] dx + \frac{1}{2} \int_0^T ||u||_{L^2}^2 dt \right]$$

From this we immidiatly see (can also be done by Jensen)

$$-\log \int \exp(-f(\varphi) - V_T(\varphi)) \leq \mathbb{E} \left[f(W_T) + \int_{\Lambda} [[(W_T)^4]] dx \right] = \mathbb{E} [f(W_T)]$$

It is not hard do thow that

$$||I_T(u)||_{H^1} \leq \left(\int_0^T ||u||_{L^2}^2 \mathrm{d}t\right)^{1/2}.$$

Construction of Φ_2^4 in finite volume

Expanding we have

$$\begin{split} & \mathbb{E}\bigg[f(W_T + I_T(u)) + \int_{\Lambda} [\![(W_T + I_T(u))^4]\!] \mathrm{d}x + \frac{1}{2} \int_0^T \|u\|_{L^2}^2 \mathrm{d}t\bigg] \\ &= \mathbb{E}\bigg[f(W_T + I_T(u)) + \int_{\Lambda} [\![W_T^3]\!] I_T(u) \mathrm{d}x + 4 \int_{\Lambda} [\![W_T^2]\!] I_T^2(u) \mathrm{d}x + 6 \int_{\Lambda} W_T I_T^3(u) \mathrm{d}x \\ &+ \int I_T^4(u) \mathrm{d}x + \frac{1}{2} \int_0^T \|u\|_{L^2}^2 \mathrm{d}t\bigg] \end{split}$$

Now to get the corresponding lower bound to our upper bound we need

 $\mathbb{E}|\mathbf{red}| \leq C + \delta \mathbb{E}[\text{green}].$

For example

$$\mathbb{E} \int_{\Lambda} \llbracket W_T^3 \rrbracket I_T(u) \mathrm{d}x$$

$$\leq C \mathbb{E} \lVert \llbracket W_T^3 \rrbracket \rVert_{H^{-1}(\Lambda)}^2 + \varepsilon \mathbb{E} \lVert I_T(u) \rVert_{H^1(\Lambda)}^2$$

$$\leq C + \varepsilon \mathbb{E} \lVert I_T(u) \rVert_{H^1(\Lambda)}^2.$$

Similar for the other terms \Rightarrow Uniform upper and lower bounds on the Laplace tranform.

Infinite volume

Now partition function diverges so we have to consider

 $\lim_{\rho \to 1} \mathcal{W}^{\rho}(f) - \mathcal{W}^{\rho}(0)$

where $\rho \in C_c^{\infty}(\mathbb{R}^2)$

$$\mathcal{W}^{\rho}(f) = \inf_{u \in \mathbb{H}_a} \mathbb{E}\bigg[f(W_{\infty} + I_{\infty}(u)) + \int \rho V_{\infty}(W_{\infty} + I_{\infty}(u)) + \frac{1}{2} \int_0^\infty ||u_t||_{L^2}^2 \mathrm{d}t\bigg]$$

 \Rightarrow Have to study the optimizer on the r.h.s and control the depencede on f. E.g. want something like

$$\int_0^\infty \int \exp(\gamma |x|) |u_t^{f,\rho} - u_t^{0,\rho}|^2 \mathrm{d}x \mathrm{d}t.$$

where $u^{f,\rho}$ is the optimizer on the r.h.s. Then we can pass to the limit in

 $\lim_{\rho \to 1} \mathcal{W}^{\rho}(f) - \mathcal{W}^{\rho}(0)$

and obtain an expression for the laplace transform. Proving decay of correlations is also possible.

Euler Lagrange equations

We can study the optimizer via it's EL equations. For $h \in \mathbb{H}_a$

$$\mathbb{E}[\nabla f(W_{\infty} + I_{\infty}(u^{f,\rho}))I_{\infty}(h)]$$

$$= \mathbb{E}\left[\int \rho \nabla V(W_{\infty} + I_{\infty}(u^{f,\rho}))I_{\infty}(h)dx\right]$$

$$+\mathbb{E}\left[\int_{0}^{\infty} \int u_{t}^{f,\rho}h_{t}dxdt\right]$$

So taking difference

$$\mathbb{E}[\nabla f(W_{\infty} + I_{\infty}(u^{f,\rho}))I_{\infty}(h)]$$

$$= \mathbb{E}\left[\int \rho(\nabla V(W_{\infty} + I_{\infty}(u^{f,\rho})) - \nabla V(W_{\infty} + I_{\infty}(u^{0,\rho})))I_{\infty}(h)dx\right]$$

$$+\mathbb{E}\left[\int_{0}^{\infty}\int (u_{t}^{f,\rho} - u_{t}^{\rho})h_{t}dxdt\right]$$

Role of convexity

Imagine if V was convex. Then testing with $h = \exp(\gamma |x|)(u^{f,\,\rho} - u^{0,\,\rho})$ we get

$$\mathbb{E}[\exp(\gamma|x|)\nabla f(W_{\infty} + I_{\infty}(u^{f,\rho}))I_{\infty}(u^{f,\rho} - u^{0,\rho})]$$

$$= \mathbb{E}\left[\int \rho \exp(\gamma|x|)(\nabla V(W_{\infty} + I_{\infty}(u^{f,\rho})) - \nabla V(W_{\infty} + I_{\infty}(u^{0,\rho})))I_{\infty}(u^{f,\rho} - u^{0,\rho})dx\right]$$

$$+\mathbb{E}\left[\int_{0}^{\infty} \int \exp(\gamma|x|)(u_{t}^{f,\rho} - u_{t}^{\rho})^{2}dxdt\right]$$

If V is convex then

SO

$$\int \rho \exp(\gamma |x|) (\nabla V(W_{\infty} + I_{\infty}(u^{f,\rho})) - \nabla V(W_{\infty} + I_{\infty}(u^{0,\rho}))) I_{\infty}(u^{f,\rho} - u^{0,\rho}) \mathrm{d}x \ge 0$$

 $\mathbb{E}\bigg[\int_0^\infty \int \exp(\gamma|x|)(u_t^{f,\rho} - u_t^{\rho})^2 \mathrm{d}x \mathrm{d}t\bigg] \leqslant |\mathbb{E}[\exp(\gamma|x|)\nabla f(W_\infty + I_\infty(u^{f,\rho}))I_\infty(u^{f,\rho} - u^{0,\rho})]|$

and with a nice f the r.h.s is bounded by

$$\mathbb{E}\left[\int_0^\infty \int \exp(\gamma |x|) (u_t^{f,\rho} - u_t^{\rho})^2 \mathrm{d}x \mathrm{d}t\right]^{1/2}$$

Now $\Lambda \,{=}\, \mathbb{R}^2$ and

$$V_T(\phi) = \lambda T^{\beta^2/4\pi} \cos(\beta\phi).$$

In this case we can obtain quite strong bounds on the minimizer.

Lemma 5. (Envelope theorem)

$$\nabla V_{t,T}(\varphi) = \mathbb{E}[\nabla V_T(W_{t,T} + I_{t,T}(u^{\varphi}) + \varphi)]$$

where u^{φ} minimizes

$$\mathbb{E}\bigg[\int \rho V_T(W_{t,T} + I_{t,T}(u^{\varphi}) + \varphi) + \frac{1}{2} \int_t^T \|u_s\|_{L^2}^2 \mathrm{d}t\bigg].$$

 $\Rightarrow \|\nabla V_{t,T}\|_{L^{\infty}} \leqslant \|\nabla V_{T}\|_{L^{\infty}}.$ So

 $\|u_t^{\varphi}\|_{L^{\infty}} = \|J_t \nabla V_{t,T} (W_{t,T} + I_{t,T} (u^{\varphi}) + \varphi)\|_{L^{\infty}} \leq t^{-1} T^{\beta^2/4\pi}$

L^{∞} Bound

Now lets take

$$\begin{split} &\|\nabla V_{t,T}(\varphi)\|_{L^{\infty}} \\ &= \|\mathbb{E}[\nabla V_{T}(W_{t,T}+I_{t,T}(u^{\varphi})+\varphi)]\|_{L^{\infty}} \\ &= \left\|\mathbb{E}\Big[\nabla V_{T}(W_{t,T}+\varphi)+\int \nabla V_{T}(W_{t,T}+\varphi+\theta I_{t,T}(u^{\varphi}))I_{t,T}(u^{\varphi})d\theta\Big]\right\|_{L^{\infty}} \\ &\leqslant \|\mathbb{E}[T^{\beta^{2}/4\pi}\sin(\beta(W_{t,T}+\varphi))]\|_{L^{\infty}}+\mathbb{E}\Big[\int \|\nabla V_{T}(W_{t,T}+\varphi+\theta I_{t,T}(u^{\varphi}))I_{t,T}(u^{\varphi})\|_{L^{\infty}}d\theta\Big] \\ &\leqslant \|\mathbb{E}[t^{\beta^{2}/4\pi}\sin(\beta\varphi)]\|_{L^{\infty}}+t^{-1}T^{\beta^{2}/4\pi} \\ &\leqslant t^{\beta^{2}/4\pi}+2t^{\beta^{2}/4\pi-1} \end{split}$$

Now can proceed inductivly to obtain

$$\sup_{\varphi} \|\nabla V_{t,T}(\varphi)\|_{L^{\infty}} \lesssim t^{\beta^2/4\pi}.$$

from this we get

$$\|u\|_{L^{\infty}} \lesssim t^{\beta^2/4\pi - 1} \sup_{\varphi} \|\nabla V_{t,T}(\varphi)\|_{L^{\infty}}$$

18/22

Recovering convexity

We can calculate by Ito's formulate

$$\int \left[\left[\cos(\beta W_{\infty} + \beta I_{\infty}(u)) \right] \right] dx$$

=
$$\int_{0}^{\infty} \int \left[\left[\cos(\beta W_{t} + \beta I_{t}(u)) \right] J_{t}u_{t} dx dt + \text{martingale} \right] dx$$

=
$$\int_{0}^{\infty} \int J_{t} \left[\left[\cos(\beta W_{t} + \beta I_{t}(u)) \right] u_{t} dx + \text{martingale} \right] dx$$

This gives us that

$$\lambda \int_0^\infty \int J_t [\![\cos(\beta W_t + \beta I_t(u))]\!] u_t \mathrm{d}x$$

is semiconvex in \boldsymbol{u} and if $\boldsymbol{\lambda}$ is sufficiently small

$$\lambda \int_0^\infty \int J_t [[\cos(\beta W_t + \beta I_t(u))]] u_t dx + \frac{1}{2} \int_0^\infty ||u||_{L^2}^2 dt$$

is convex in u.

Coupling

 \diamondsuit We can obtain a coupling between the Free Field and the Sine Gordon measure. Set

$$\nu^{\mathrm{SG}} = \frac{1}{Z^{\rho}} \exp\left(-\int \rho \llbracket \cos(\beta\phi) \rrbracket\right) \mathrm{d}\mu \quad Z^{\rho} = \int \exp\left(-\int \rho \llbracket \cos(\beta\phi) \rrbracket\right) \mathrm{d}\mu$$

Proposition 6.

$$\int f(\varphi) \mathrm{d}\nu_{\mathrm{SG}}^{\rho} = \mathbb{E}[f(W_{\infty} + I_{\infty}(u^{\rho}))]$$

One can show

$$\sup_{\rho} \|I_{\infty}(u^{\rho})\|_{L^{\infty}(\mathbb{P}, C^{2-\delta})} < \infty$$

 $\Diamond \mathsf{Proof} \text{ uses that}$

$$\int f(\varphi) \mathrm{d}\nu_{\mathrm{SG}}^{\rho} = \lim_{s \to 0} \frac{1}{s} \left(\log \int \exp(-sf(\varphi)) \mathrm{d}\nu_{\mathrm{SG}}^{\rho} - \log Z^{\rho} \right)$$

 \diamond Bauerschmidt-Hofstetter derive results on the maximum of the Sine-Gordon field.

Large Deviations

Want to study semiclassical limit of measures

$$\nu_{\mathrm{SG},\hbar} = \exp\left(-\frac{\lambda}{\hbar} \int_{\mathbb{R}^2} \left[\!\!\left[\sin(\beta\phi)\right]\!\right] - \frac{1}{\hbar} \int_{\mathbb{R}^2} \!\!\phi(m^2 - \Delta)\phi \mathrm{d}x\right) = \exp\left(-\frac{\lambda}{\hbar} \int_{\mathbb{R}^2} \left[\!\!\left[\sin(\beta\phi)\right]\!\right] \mathrm{d}x\right) \mu^{\hbar}$$

where the covariance of μ^{\hbar} is

$$\hbar (m^2 - \Delta)^{-1}.$$

A sequence of measures ν_{\hbar} satisfies a large deviation principle with rate function L if $\lim_{\hbar \to 0} -\hbar \log \int \exp \left(-\frac{1}{\hbar}f(\phi)\right) d\nu_{\hbar} = \inf_{\phi} \left\{f(\phi) + L(\phi)\right\}$

Proposition 7. If λ is suffiencly small, $\nu_{SG,\hbar}$ satisfies a large deviations with rate functions

$$L(\varphi) = \lambda \int_{\mathbb{R}^2} \cos(\beta \phi) dx + \int_{\mathbb{R}^2} \phi(m^2 - \Delta) \phi dx.$$